Skip to main content
Log in

Poly(ADP-ribose) turnover in quail myoblast cells: Relation between the polymer level and its catabolism by glycohydrolase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The concerted action of poly(ADP-ribose) polymerase (PARP) which synthesizes the poly(ADP-ribose) (pADPr) in response to DNA strand breaks and the catabolic enzyme poly(ADP-ribose) glycohydrolase (PARG) determine the level of polymer and the rate of its turnover. In the present study, we have shown that the quail myoblast cells have high levels of basal polymer as compared to the murine C3H10T1/2 fibroblasts. We have conducted this study to investigate how such differences influence polymer synthesis and its catabolism in the cells in response to DNA damage by alkylating agent. In quail myoblast cells, the presence of high MNNG concentration such as 200 \sgmaelig;M for 30 min induced a marginal decrease of 15% in the NAD content. For C3H10T1/2 cell line, 64 \sgmaelig;M MNNG provoked a depletion of NAD content by approximately 50%. The induction of the polymer synthesis in response to MNNG treatment was 6-fold higher in C3H10T1/2 cells than in quail myoblast cells notwithstanding the fact that 3-fold higher MNNG concentration was used for quail cells. The polymer synthesis thus induced in quail myoblast cells had a 4-5 fold longer half life than those induced in C3H10T1/2 cells. To account for the slow turnover of the polymer in the quail myoblast cells, we compared the activities of the polymer catabolizing enzyme (PARG) in the two cell types. The quail myoblast cells had about 25% less activity of PARG than the murine cells. This difference in activity is not sufficient to explain the large difference of the rate of catabolism between the two cell types implicating other cellular mechanisms in the regulation of pADPr turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boulikas T: Relation between carcinogenesis, chromatin structure and poly(ADP-ribosylation) (review). Anticancer Res 11: 489–527, 1991

    PubMed  Google Scholar 

  2. de Murcia G, Schreiber V, Molinete M, Saulier B, Poch O, Masson M, Niedergang C, Menissier de Murcia J: Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 138: 15–24, 1994

    PubMed  Google Scholar 

  3. de Murcia G, Menissier de Murcia J: Poly(ADP-ribose) polymerase: A molecular nick-sensor. Trends Biochem Sci 19: 172–176, 1994

    PubMed  Google Scholar 

  4. Takahashi A, Alnemri ES, Lazebnik YA, Fernandes-Alnemri T, Litwack G, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC: Cleavage of lamin A by Mch2∝but not CPP32: Multiple ICE-related proteases with distinct substrate recognition properties are active in apoptosis. Pro Natl Acad Sci USA 93: 8395–8400,1996

    Google Scholar 

  5. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC: Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346–347, 1994

    PubMed  Google Scholar 

  6. Lautier D, Lagueux J, Thibodeau J, Ménard L, Poirier GG: Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell Biochem 122: 171–193, 1993

    PubMed  Google Scholar 

  7. Malanga M, Althaus FR: Poly(ADP-ribose) molecules formed during DNA repair in vivo. J Biol Chem 269: 17691–17696, 1994

    PubMed  Google Scholar 

  8. Poirier GG, Moreau P: ADP-Ribosylation Reactions. Springer-Verlag, New York, 1992

    Google Scholar 

  9. Alvarez-Gonzalez R, Althaus FR: Poly (ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res 218: 67–74, 1989

    PubMed  Google Scholar 

  10. Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H: DNA fragmentation and NAD depletion: Their relation to the turnover of endogenous to mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins. J Biol Chem 257: 12872–12877, 1982

    PubMed  Google Scholar 

  11. Jonsson GG, Jacobson EL, Jacobson MK: Mechanism of alteration of poly(adenosine diphosphate-ribose) metabolism by hyperthermia. Cancer Res 48: 4233–4239, 1988

    PubMed  Google Scholar 

  12. Jonsson GG, Ménard L, Jacobson EL, Poirier GG, Jacobson MK: Effect of hyperthermia on poly(adenosine diphosphate-ribose) glycohydrolase. Cancer Res 48: 4240–4243, 1988

    PubMed  Google Scholar 

  13. Kleczkowska HE, Szumiel I, Althaus F: Differential poly(ADP-ribose) metabolism in repair-proficient and repair-deficient murine lymphoma cells. Mutat Res 235: 93–99, 1990

    PubMed  Google Scholar 

  14. Ignatius A, Hund M, Tempel K: Poly(ADP-ribose) polymerase-activity of chicken embryo cells exposed to nucleotoxic agents. Toxicology 76: 187–196, 1992

    PubMed  Google Scholar 

  15. Singh NS, Poirier GG, Cerutti PA: Tumor promoter phorbol-12–myristate-13 acetate induces poly(ADP-ribosyl)ation in fibroblasts. EMBO J 4: 1491–1494, 1985

    PubMed  Google Scholar 

  16. Jacobson EL, Smith JY, Mingmuang M, Meadows R, Sims JL, Jacobson MK: Effect of nicotinamide analogues on recovery from DNA damage in C3H10T1/2 cells. Cancer Res 44: 2485–2492, 1984

    PubMed  Google Scholar 

  17. Zahradka P, Ebisuzaki K: Poly(ADP-ribose) polymerase is a zinc metalloenzyme. Eur J Biochem 142: 503–509, 1984

    PubMed  Google Scholar 

  18. Thomassin H, Jacobson MK, Guay J, Verreault A, Aboul-Ela N, Ménard L, Poirier GG: An affinity matrix for the purification of poly (ADP-ribose) glycohydrolase. Nucleic Acid Res 18: 4691–4694, 1990

    PubMed  Google Scholar 

  19. Brochu G, Duchaine C, Thibeault L, Lagueux J, Shah GM, Poirier GG: Mode of action of poly(ADP-ribose) glycohydrolase. Biochim Biophys Acta 1219: 342–350, 1994

    PubMed  Google Scholar 

  20. Brochu G, Shah GM, Poirier GG: Purification of poly(ADP-ribose) glycohydrolase and detection of its isoforms by a zymogram following one-or two-dimensional electrophoresis. Anal Biochem 218: 265–272, 1994

    PubMed  Google Scholar 

  21. Ménard L, Poirier GG: Rapid assay of poly (ADP-ribose) glycohydrolase. Biochem Cell Biol 65: 668–673, 1987

    PubMed  Google Scholar 

  22. Shah GM, Poirier D, Duchaine C, Brochu G, Desnoyers S, Lagueux J, Verreault A, Hoflack JC, Kirkland JB, Poirier GG: Methods for biochemical study of poly(ADP-ribose) metabolism in vitro and in vivo. Anal Biochem 227: 1–13, 1995

    PubMed  Google Scholar 

  23. Canales J, Pinto RM, Costas MJ, Hernandez MT, Miro A, Bernet D, Fernandez A, Cameselle JC: Rat liver nucleoside diphosphosugar or diphosphoalcohol pyrophosphatases different from nucleotide pyrophosphatase or phosphodiesterase I: substrate specificities of Mg(2+)-and/or Mn(2+)-dependent hydrolases acting on ADP-ribose. Biochim Biophys Acta 1246: 167–177, 1995

    PubMed  Google Scholar 

  24. Miwa M, Nakatsugawa K, Hara K, Taijiro M, Sugimura T: Degradation of poly(adenosine diphosphate ribose) by homogenates of various normal tissues and tumors of rats. Arch Biochem Biophys 167: 54–60, 1975

    PubMed  Google Scholar 

  25. Vincent R, Nadeau D: A micromethod for the quantification of cellular proteins in Percoll with the Coomassie brilliant blue dye-binding assay. Anal Biochem 135: 355–362, 1983

    PubMed  Google Scholar 

  26. Shah GM, Poirier D, Desnoyers S, Saint-Martin S, Hoflack JC, Rong P, ApSimon M, Kirkland JB, Poirier GG: Complete inhibition of poly(ADP-ribose) polymerase activity prevents the recovery of C3H10T1/2 cells from oxidative stress. Biochim Biophys Acta 1312: 1–7, 1996

    PubMed  Google Scholar 

  27. Wielckens K, George E, Pless T, Hiltz H: Stimulation of poly(ADPribosyl) ation during Ehrlich ascites tumor cell ‘starvation’ and suppression of concomitant DNA fragmentation by benzamide. J Biol Chem 258: 4098–4104, 1983

    PubMed  Google Scholar 

  28. Jacobson EL, Antol KM, Juarez-Salinas H, Jacobson MK: Poly(ADPribose) metabolism in ultraviolet irradiated human fibroblasts. J Biol Chem 258: 103–107, 1983

    PubMed  Google Scholar 

  29. Juarez-Salinas H, Duran-Torres G, Jacobson MK: Alteration of poly(ADP-ribose) metabolism by hyperthermia. Biochem Biophys Res Commun 122: 1381–1388, 1984

    PubMed  Google Scholar 

  30. Hilz H, Wielckens K, Bredehorst R: Quantitation of mono(ADPribosyl) and poly(ADP-ribosyl) proteins. In: O. Hayaishi, K. Ueda (eds) ADP-ribosylation reactions: Biology and Medicine. Academic Press, New York 1982, pp 305–321

    Google Scholar 

  31. Kreimeyer A, Wielckens K, Adamietz P, Hilz H: DNA repair-associated ADP-ribosylation in vivo. J Biol Chem 259: 890–896, 1984

    PubMed  Google Scholar 

  32. Wielckens K, Bredehorst R, Adamietz P, Hilz H: Protein-bound polymeric and monomeric ADP-ribose residues in hepatic tissues. Comparative analyses using a new procedure for the quantification of poly(ADP-ribose). Eur J Biochem 117: 69–74, 1981

    PubMed  Google Scholar 

  33. Wielckens K, Delfs T: Glucocorticoid-induced cell death and poly[adenosine diphosphate(ADP)-ribosyl]ation: Increased toxicity of dexamethasone on mouse S49.1 lymphoma cells with the poly(ADPribosyl) ation inhibitor benzamide. Endocrinology 119: 2383–2392, 1986

    PubMed  Google Scholar 

  34. Aboul-Ela N, Jacobson EL, Jacobson MK: Labeling methods for the study of poly-and mono(ADP-ribose) metabolism in cultured cells. Anal Biochem 174: 239–250, 1988

    PubMed  Google Scholar 

  35. Juarez-Salinas H, Sims JL, Jacobson MK: Poly(ADP-ribose) levels in carcinogen treated cells. Nature 282: 740–741, 1979

    PubMed  Google Scholar 

  36. Lagueux J, Menard L, Candas B, Brochu G, Potvin F, Verreault A, Cook PF, Poirier GG: Equilibrium model in an in vitro poly(ADPribose) turnover system. Biochim Biophys Acta 1264: 201–208, 1995

    PubMed  Google Scholar 

  37. Ménard L, Thibeault L, Poirier GG: Reconstitution of an in vitro poly (ADP-ribose) turnover system. Biochim Biophys Acta 1049: 45–58, 1990

    PubMed  Google Scholar 

  38. Thomassin H, Menard L, Hengartner C, Kirkland JB, Poirier GG: Poly(ADP-ribosyl)ation of chromatin in an in-vitro poly(ADPribose)-turnover system. Biochim Biophys Acta 1137: 171–181, 1992

    PubMed  Google Scholar 

  39. Malanga M, Bachmann S, Panzeter PL, Zweifel B, Althaus FR: Poly(ADP-ribose) quantification at the femtornole level in mammalian cells. Anal Biochem 228: 245–251, 1995

    PubMed  Google Scholar 

  40. Kawaichi M, Ueda K, Hayaishi O: Multiple autopoly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase. J Biol Chem 256: 9483–9489, 1981

    PubMed  Google Scholar 

  41. Hatakeyama K, Nemoto Y, Ueda K, Hayaishi O: Purification and characterization of poly(ADP-ribose) glycohydrolase. Different modes of action on large and small poly(ADP-ribose). J Biol Chem 261: 14902–14911, 1986

    PubMed  Google Scholar 

  42. Tanuma S, Kawashima K, Endo H: Purification and properties of an (ADP-ribose)n glycohydrolase from guinea pig liver nuclei. J Biol Chem 261: 965–969, 1986

    PubMed  Google Scholar 

  43. Uchida K, Suzuki H, Maruta H, Abe H, Aoki K, Miwa M, Tanuma S: Preferential degradation of protein-bound (ADP-ribose)n by nuclear poly(ADPribose) glycohydrolase from human placenta. J Biol Chem 268: 3194–3200, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Affar, E., Shah, R. & Poirier, G. Poly(ADP-ribose) turnover in quail myoblast cells: Relation between the polymer level and its catabolism by glycohydrolase. Mol Cell Biochem 193, 127–135 (1999). https://doi.org/10.1023/A:1006984715891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006984715891

Navigation