Skip to main content
Log in

Protein poly(ADP-ribosyl)ation system: Changes in development and aging as well as due to restriction of cell proliferation

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It is well known that the number of dividing cells in an organism decreases with age. The average rate of cell division in tissues and organs of a mature organism sharply decreases, which is probably a trigger for accumulation of damage leading to disturbance of genome integrity. This can be a cause for the development of many age-related diseases and appearance of phenotypic and physiological signs of aging. In this connection, the protein poly(ADP-ribosyl)ation system, which is activated in response to appearance of various DNA damage, attracts great interest. This review summarizes and analyzes data on changes in the poly(ADP-ribosyl)ation system during development and aging in vivo and in vitro, and due to restriction of cell proliferation. Special attention is given to methodological aspects of determination of activity of poly(ADP-ribose) polymerases (PARPs). Analysis of relevant publications and our own data has led us to the conclusion that PARP activity upon the addition of free DNA ends (in this review referred to as stimulated PARP activity) is steadily decreasing with age. However, the dynamics of PARP activity measured without additional activation of the enzyme (in this review referred to as unstimulated activity) does not have such a clear trend: in many studies, the presented differences are statistically non-significant, although it is well known that the number of unrepaired DNA lesions steadily increases with aging. Apparently, the cell has additional regulatory systems that limit its own capability of reacting to DNA damage. Special attention is given to the influence of the cell proliferative status on PARP activity. We have systematized and analyzed data on changes in PARP activity during development and aging of an organism, as well as data on differences in the dynamics of this activity in the presence/absence of additional stimulation and on cellular processes that are associated with activation of these enzymes. Moreover, data obtained in different models of cellular aging are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPD:

cell population doubling

DIV:

days in vitro

PAR:

poly(ADP-ribose)

PARP:

poly(ADP-ribose) polymerase

PARP-1:

poly(ADP-ribose) polymerase 1

PBMC:

peripheral blood mononuclear cells

SA:

stimulated activity

UnSA:

unstimulated activity

References

  1. Shilovsky, G. A., Khokhlov, A. N., and Shram, S. I. (2013) The protein poly(ADP-ribosyl)ation system: its role in genome stability and lifespan determination, Biochemistry (Moscow), 78, 433–444.

    Article  CAS  Google Scholar 

  2. Bizec, J. C., Klethi, J., and Mandel, P. (1989) Regulation of protein adenosine diphosphate ribosylation in bovine lens during aging, Ophthalmic Res., 21, 175–183.

    Article  CAS  PubMed  Google Scholar 

  3. Mandel, P. (1991) ADP-ribosylation: approach to molecu-lar basis of aging, Adv. Exp. Med. Biol., 296, 329–343.

    Article  CAS  PubMed  Google Scholar 

  4. Schroder, H. C., Steffen, R., Wenger, R., Ugarkovic, D., and Muller, W. E. (1989) Age-dependent increase of DNA topoisomerase II activity in quail oviduct; modulation of the nuclear matrix-associated enzyme activity by protein phosphorylation and poly(ADP-ribosyl)ation, Mutat. Res., 219, 283–294.

    Article  CAS  PubMed  Google Scholar 

  5. Quesada, P., Faraone-Mennella, M. R., Jones, R., Malanga, M., and Farina, B. (1990) ADP-ribosylation of nuclear proteins in rat ventral prostate during ageing, Biochem. Biophys. Res. Commun., 170, 900–907.

    Article  CAS  PubMed  Google Scholar 

  6. Grube, K., and Burkle, A. (1992) Poly(ADP-ribose) poly-merase in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span, Proc. Natl. Acad. Sci. USA, 82, 11759–11763.

    Article  Google Scholar 

  7. Mishra, S. K., and Das, B. R. (1992) (ADP-ribosyl)ation pattern of chromosomal proteins during ageing, Cell. Mol. Biol., 38, 457–462.

    CAS  PubMed  Google Scholar 

  8. Messripour, M., Weltin, D., Rastegar, A., Ciesielski, L., Kopp, P., Chabert, M. D., and Mandel, P. (1994) Age-asso-ciated changes of rat brain neuronal and astroglial poly(ADP-ribose) polymerase activity, J. Neurochem., 62, 502–506.

    Article  CAS  PubMed  Google Scholar 

  9. Strosznajder, J. B., Jesko, H., and Strosznajder, R. P. (2000b) Age-related alteration of poly(ADP-ribose) poly-merase activity in different parts of the brain, Acta Biochim. Pol., 47, 331–337.

    CAS  PubMed  Google Scholar 

  10. Ushakova, T. E., Ploskonosova, I. I., Guliaeva, N. A., Rasskazova, E. A., and Gaziev, A. I. (2004) ADP-ribosyla-tion of proteins in nuclei and mitochondria from tissues rats of various age exposed gamma-radiation, Radiats. Biol. Radioekol., 44, 509–525.

    CAS  Google Scholar 

  11. Strosznajder, R. P., Jesko, H., and Adamczyk, A. (2005) Effect of aging and oxidative/genotoxic stress on poly(ADP-ribose) polymerase-1 activity in rat brain, Acta Biochim. Pol., 52, 909–914.

    CAS  PubMed  Google Scholar 

  12. Braidy, N., Guillemin, G. J., Mansour, H., Chan-Ling, T., Poljak, A., and Grant, R. (2011) Age-related changes in NAD+ metabolism oxidative stress and Sirt1 activity in Wistar rats, PLoS One, 6, 191–194.

    Article  Google Scholar 

  13. Kanungo, M. (1980) Biochemistry of Aging, Academic Press, London.

    Google Scholar 

  14. Mocchegiani, E. (2007) Zinc and ageing: third Zincage conference, Immun. Ageing, 4, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kunzmann, A., Dedoussis, G., Jajte, J., Malavolta, M., Mocchegiani, E., and Burkle, A. (2008) Effect of zinc on cellular poly(ADP-ribosyl)ation capacity, Exp. Gerontol., 43, 409–414.

    Article  CAS  PubMed  Google Scholar 

  16. Zaremba, T., Thomas, H. D., Cole, M., Coulthard, S. A., Plummer, E. R., and Curtin, N. J. (2011) Poly(ADP-ribose) polymerase-1 (PARP-1) pharmacogenetics, activity and expression analysis in cancer patients and healthy vol-unteers, Biochem. J., 436, 671–679.

    Article  CAS  PubMed  Google Scholar 

  17. Krasnov, M. S., Gurmizov, E. P., Iamskova, V. P., Gundorova, R. A., and Iamskov, I. A. (2005) New regula-tory protein isolated from the bovine eye lens and its action on the cataract development in rat in vitro, Vestn. Oftalmol., 121, 37–39.

    CAS  PubMed  Google Scholar 

  18. Strosznajder, J. B., Jesko, H., and Strosznajder, R. P. (2000) Effect of amyloid beta peptide on poly(ADP-ribose) polymerase activity in adult and aged rat hippocampus, Acta Biochim. Pol., 47, 847–854.

    CAS  PubMed  Google Scholar 

  19. Malanga, M., Romano, M., Ferone, A., Petrella, A., Monti, G., Jones, R., Limatola, E., and Farina, B. (2005) Misregulation of poly(ADP-ribose) polymerase-1 activity and cell type-specific loss of poly(ADP-ribose) synthesis in the cerebellum of aged rats, J. Neurochem., 93, 1000–1009.

    Article  CAS  PubMed  Google Scholar 

  20. Thakur, M. K., and Prasad, S. (1990) ADP-ribosylation of HMG proteins and its modulation by different effectors in the liver of aging rats, Mech. Ageing Dev., 53, 91–100.

    Article  CAS  PubMed  Google Scholar 

  21. Massudi, H., Grant, R., Braidy, N., Guest, J., Farnsworth, B., and Guillemin, G. J. (2012) Age-associated changes in oxidative stress and NAD+ metabolism in human tissue, PLoS One, 7, e42357.

  22. O’Valle, F., Del Moral, R. G., Benitez, M. C., Martin-Oliva, D., Gomez-Morales, M., Aguilar, D., Aneiros-Fernandez, J., Hernandez-Cortes, P., Osuna, A., Moreso, F., Seron, D., Oliver, F. J., and Del Moral, R. G. (2004) Correlation of morphological findings with functional reserve in the aging donor: role of the poly(ADP-ribose) polymerase, Transplant. Proc., 36, 733–735.

    Article  PubMed  Google Scholar 

  23. Khokhlov, A. N. (2010) From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological stud-ies, Biophysics, 55, 859–864.

    Article  Google Scholar 

  24. Khokhlov, A. N., and Morgunova, G. V. (2017) Testing of geroprotectors in experiments on cell cultures: pros and cons, in Anti-aging Drugs: From Basic Research to Clinical Practice, RSC Drug Discovery (Vaiserman, A. M., ed.) Royal Society of Chemistry, pp. 53–74.

    Google Scholar 

  25. Comfort, A. (1979) The Biology of Senescence, Churchill Livingstone, Edinburgh-London.

    Google Scholar 

  26. Khokhlov, A. N. (2010) Does aging need an own program or the existing development program is more than enough, Russ. J. Gen. Chem., 80, 1507–1513.

    Article  CAS  Google Scholar 

  27. Khokhlov, A. N. (2013) Impairment of regeneration in aging: appropriateness or stochastics? Biogerontology, 14, 703–708.

    Article  CAS  PubMed  Google Scholar 

  28. Khokhlov, A. N., Klebanov, A. A., Karmushakov, A. F., Shilovsky, G. A., Nasonov, M. M., and Morgunova, G. V. (2014) Testing of geroprotectors in experiments on cell cul-tures: choosing the correct model system, Moscow Univ. Biol. Sci. Bull., 69, 10–14.

    Article  Google Scholar 

  29. Dell’Orco, R. T. (1975) The use of arrested populations of human diploid fibroblasts for the study of senescence in vitro, Adv. Exp. Med. Biol., 53, 41–49.

    Article  PubMed  Google Scholar 

  30. Vorsanova, S. G. (1977) Stationary cell populations as a model of aging, in Gerontology and Geriatrics, 1977. Annual [in Russian], Institute of Gerontology, Kiev, pp. 118–123.

    Google Scholar 

  31. Khokhlov, A. N. (1988) Cell Proliferation and Aging. Advances in Science and Technology, VINITI Akad. Sci. USSR, Ser. General Problems of Physicochemical Biology, Vol. 9 [in Russian], VINITI, Moscow.

    Google Scholar 

  32. Petrov, Y. P., and Tsupkina, N. V. (2013) Growth characteristics of CHO cells in culture, Cell Tiss. Biol., 7, 72–78.

    Article  Google Scholar 

  33. Khokhlov, A. N. (2013) Decline in regeneration during aging: appropriateness or stochastics? Russ. J. Dev. Biol., 44, 336–341.

    Article  CAS  Google Scholar 

  34. Khokhlov, A. N. (2014) On the immortal hydra. Again, Moscow Univ. Biol. Sci. Bull., 69, 153–157.

    Article  Google Scholar 

  35. Khokhlov, A. N. (2013) Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors, Curr. Aging Sci., 6, 14–20.

    Article  CAS  PubMed  Google Scholar 

  36. Wei, L., Li, Y., He, J., and Khokhlov, A. N. (2012) Teaching the cell biology of aging at the Harbin Institute of Technology and Moscow State University, Moscow Univ. Biol. Sci. Bull., 67, 13–16.

    Article  Google Scholar 

  37. Morgunova, G. V., Klebanov, A. A., and Khokhlov, A. N. (2016) Some remarks on the relationship between autophagy, cell aging, and cell proliferation restriction, Moscow Univ. Biol. Sci. Bull., 71, 207–211.

    Article  Google Scholar 

  38. Burkle, A., Muller, M., Wolf, I., and Kupper, J.-H. (1994) Poly(ADP-ribose) polymerase activity in intact or perme-abilized leukocytes from mammalian species of different longevity, Mol. Cell. Biochem., 138, 85–90.

    Article  CAS  PubMed  Google Scholar 

  39. Hart, R. W., and Setlow, R. B. (1974) Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species, Proc. Natl. Acad. Sci. USA, 71, 2169–2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sweigert, S. E., Marston, J. M., and Dethlefsen, L. A. (1990) Poly(ADP-ribose) metabolism in proliferating ver-sus quiescent cells and its relationship to their radiation responses, Int. J. Radiat. Biol., 58, 111–123.

    Article  CAS  PubMed  Google Scholar 

  41. Kun, E., Kirsten, E., Bauer, P. I., and Ordahl, C. P. (2006) Quantitative correlation between cellular proliferation and nuclear poly(ADP-ribose) polymerase (PARP-1), Int. J. Mol. Med., 17, 293–300.

    CAS  PubMed  Google Scholar 

  42. Salminen, A., Helenius, M., Lahtinen, T., Korhonen, P., Tapiola, T., Soininen, H., and Solovyan, V. (1997) Down-regulation of Ku autoantigen, DNA-dependent protein kinase, and poly(ADP-ribose) polymerase during cellular senescence, Biochem. Biophys. Res. Commun., 38, 712–716.

    Article  Google Scholar 

  43. Spina Purello, V., Cormaci, G., Denaro, L., Reale, S., Costa, A., Lalicata, C., Sabbatini, M., Marchetti, B., and Avola, R. (2002) Effect of growth factors on nuclear and mitochondrial ADP-ribosylation processes during astroglial cell development and aging in culture, Mech. Ageing Dev., 123, 511–520.

    Article  Google Scholar 

  44. Tanigawa, Y., Kawamura, M., Kitamura, A., and Shimoyama, M. (1978) Suppression and stimulation of DNA synthesis by ADP-ribosylation of nuclear proteins from adult hen and chick embryo liver, Biochem. Biophys. Res. Commun., 81, 1278–1285.

    Article  CAS  PubMed  Google Scholar 

  45. Porteous, J. W., Furneaux, H. M., Pearson, C. K., Lake, C. M., and Morrison, A. (1979) Poly(adenosine diphosphate ribose) synthetase activity in nuclei of dividing and of non-dividing but differentiating intestinal epithelial cells, Biochem. J., 180, 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rastl, E., and Swetly, P. (1978) Expression of poly(adeno-sine diphosphate-ribose) polymerase activity in ery-throleukemic mouse cells during cell cycle and erythropoi-etic differentiation, J. Biol. Chem., 253, 4333–4340.

    CAS  PubMed  Google Scholar 

  47. Muller, W. E., Totsuka, A., Nusser, I., Obermeier, J., Rhode, H. J., and Zahn, R. K. (1974) Poly(adenosine diphosphate-ribose) polymerase in quail oviduct. Changes during estrogen and progesterone induction, Nucleic Acids Res., 1, 1317–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quesada, P., Farina, B., and Jones, R. (1989) Poly(ADP-ribosylation) of nuclear proteins in rat testis correlates with active spermatogenesis, Biochim. Biophys. Acta, 1007, 167–175.

    Article  CAS  PubMed  Google Scholar 

  49. Quesada, P., Atorino, L., Cardone, A., Ciarcia, G., and Farina, B. (1996) Poly(ADP-ribosyl)ation system in rat germinal cells at different stages of differentiation, Exp. Cell Res., 226, 183–190.

    Article  CAS  PubMed  Google Scholar 

  50. Shambaugh, G. E., III, Koehler, R. R., and Radosevich, J. A. (1988) Developmental pattern of poly(ADP-ribose) syn-thetase and NAD glycohydrolase in the brain of the fetal and neonatal rat, Neurochem. Res., 13, 973–981.

    Article  CAS  PubMed  Google Scholar 

  51. Jackowski, G., and Kun, E. (1981) Age-dependent varia-tion of rates of polyadenosine-diphosphoribose synthesis by cardiocytes nuclei and the lack of correlation of enzymatic activity with macromolecular size distribution of DNA, J. Biol. Chem., 256, 3667–3670.

    CAS  PubMed  Google Scholar 

  52. Hayflick, L. (1976) The cell biology of human aging, N. Engl. J. Med., 295, 1302–1308.

    Article  CAS  PubMed  Google Scholar 

  53. Kennedy, B. K., Austriaco, N. R., Jr., and Guarente, L. (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span, J. Cell Biol., 127, 1985–1993.

    Article  CAS  PubMed  Google Scholar 

  54. Knorre, D. A., Kulemzina, I. A., Sorokin, M. I., Kochmak, S. A., Bocharova, N. A., Sokolov, S. S., and Severin, F. F. (2010) Sir2-dependent daughter-to-mother transport of the damaged proteins in yeast is required to prevent high stress sensitivity of the daughters, Cell Cycle, 9, 4501–4505.

    Article  CAS  PubMed  Google Scholar 

  55. Sorokin, M. I., Knorre, D. A., and Severin, F. F. (2014) Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae, Microb. Cell, 1, 37–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nagarajan, S., Kruckeberg, A. L., Schmidt, K. H., Kroll, E., Hamilton, M., McInnerney, K., Summers, R., Taylor, T., and Rosenzweig, F. (2014) Uncoupling reproduction from metabolism extends chronological lifespan in yeast, Proc. Natl. Acad. Sci. USA, 111, 1538–1547.

    Article  Google Scholar 

  57. Chen, Q., Ding, Q., and Keller, J. N. (2005) The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration, Biogerontology, 6, 1–13.

    Article  CAS  PubMed  Google Scholar 

  58. Morgunova, G. V., Klebanov, A. A., Marotta, F., and Khokhlov, A. N. (2017) Culture medium pH and stationary phase/chronological aging of different cells, Moscow Univ. Biol. Sci. Bull., 72, 47–51.

    Article  Google Scholar 

  59. Gensler, H. L., and Bernstein, H. (1981) DNA damage as the primary cause of aging, Q. Rev. Biol., 56, 279–303.

    Article  CAS  PubMed  Google Scholar 

  60. Khokhlov, A. N., Kirnos, M. D., and Vaniushin, B. F. (1988) The level of DNA methylation and “stationary-phase aging” in cultured cells, Izv. Akad. Nauk SSSR Biol., 3, 476–478.

    Google Scholar 

  61. Vilenchik, M. M., Khokhlov, A. N., and Grinberg, K. N. (1981) Study of spontaneous DNA lesions and DNA repair in human diploid fibroblasts aged in vitro and in vivo, Stud. Biophys., 85, 53–54.

    CAS  Google Scholar 

  62. Dell’Orco, R. T., and Anderson, L. E. (1991) Decline of poly(ADP-ribosyl)ation during in vitro senescence in human diploid fibroblasts, J. Cell. Physiol., 146, 216–221.

    Article  PubMed  Google Scholar 

  63. Holliday, R. (2007) Aging: The Paradox of Life: Why We Age, Springer, Dordrecht.

    Google Scholar 

  64. Zaniolo, K., Rufiange, A., Leclerc, S., Desnoyers, S., and Guerin, S. L. (2005) Regulation of the PARP-1 gene expression by the transcription factors Sp1 and Sp3 is under the influence of cell density in primary cultured cells, Biochem. J., 389, 423–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shram, S. I., Shilovsky, G. A., and Khokhlov, A. N. (2006) Poly(ADP-ribose)-polymerase-1 and aging: experimental study of possible relationship on stationary cell cultures, Bull. Exp. Biol. Med., 141, 628–632.

    Article  CAS  PubMed  Google Scholar 

  66. Khokhlov, A. N., Prokhorov, L. Iu., Akimov, S. S., Shilovskii, G. A., Shcheglova, M. V., and Soroka, A. E. (2005) “Stationary phase aging” of cell culture: an attempt of evaluation of growth medium “age” effect, Tsitologiia, 47, 318–322.

    CAS  PubMed  Google Scholar 

  67. Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298–300.

    Article  CAS  PubMed  Google Scholar 

  68. Akif’ev, A. P., and Potapenko, A. I. (2001) Nuclear genetic material as an initial substrate for animal aging, Genetika, 37, 1445–1458.

    PubMed  Google Scholar 

  69. Anisimov, V. N. (2008) Molecular and Physiological Mechanisms of Aging [in Russian], Nauka, SPb.

    Google Scholar 

  70. D’Amours, D., Desnoyers, S., D’Silva, I., and Poirier, G. G. (1999) Poly(ADP-ribosyl)ation reactions in the regula-tion of nuclear functions, Biochem. J., 342, 249–268.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cuzzocrea, S., McDonald, M. C., Mazzon, E., Dugo, L., Serraino, I., Threadgill, M., Caputi, A. P., and Thiemermann, C. (2002) Effects of 5-aminoisoquinoli-none, a water-soluble, potent inhibitor of the activity of poly(ADP-ribose) polymeras, in a rodent model of lung injury, Biochem. Pharmacol., 63, 293–304.

    Article  CAS  PubMed  Google Scholar 

  72. Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H., and Poirier, G. G. (2010) PARP inhibition: PARP1 and beyond, Nat. Rev. Cancer, 10, 293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khokhlov, A. N. (2013) Evolution of the term “cellular senescence” and its impact on the current cytogerontolog-ical research, Moscow Univ. Biol. Sci. Bull., 68, 158–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Khokhlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilovsky, G.A., Shram, S.I., Morgunova, G.V. et al. Protein poly(ADP-ribosyl)ation system: Changes in development and aging as well as due to restriction of cell proliferation. Biochemistry Moscow 82, 1391–1401 (2017). https://doi.org/10.1134/S0006297917110177

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917110177

Keywords

Navigation