Skip to main content
Log in

The generation and characterization of a rat neural cell line overexpressing the α2,6(N) sialyltransferase

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In order to examine the effects of altered protein sialylation on neural cell function, B104 rat neuroblastoma cells were stably transfected with the cDNA coding for α2,6(N) sialyltransferase (ST(6)N). Lectin blot analysis of the clones demonstrated an increase in staining of the Sambucus nigra lectin, which detects α2,6 linked sialic acid, in parallel with enzyme activity. There was a concomitant decrease in staining by the Maackia amurensis lectin which labels α2,3-linked sialic acid, indicating that the individual sialyltransferase enzymes may compete for penultimate galactose acceptor sites. While there was an initial increase in protein-bound sialic acid in parallel with enzyme activity, the sialylation of the cells was demonstrated to be saturable. There was an inverse relationship between cell adhesion to a fibronectin substrate and ST(6)N activity suggesting that the negatively charged sugar acts to modulate cell-substrate interaction. These cells will provide an ideal model system with which to further investigate the effect of altered sialic acid on neural cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sturm A, Bergweff AA, Vliegenthart JFG (1992) Eur J Biochem 204: 313-16.

    PubMed  Google Scholar 

  2. Rayon C, Gomord V, Faye L, Lerouge P (1996) Plant Physiol Biochem 34: 273-81.

    Google Scholar 

  3. Foxwell BMJ, Donovan TA, Thorpe PE, Wilson G (1985) Biochim Biophys Acta 840: 193-203.

    PubMed  Google Scholar 

  4. Kimura Y, Hase S, Kobayashi Y, Kyogoku Y, Funatsu G, Ikenaka T (1987) J Biochem 101: 1051-4.

    PubMed  Google Scholar 

  5. Kimura Y, Suehisa H, Yamaguchi O, Nakajima S, Takagi S (1990) Agric Biol Chem 54: 3259-67.

    PubMed  Google Scholar 

  6. Debray H, Wieruszeski J-M, Strecker G, Franz H (1992) Carbohydr Res 236: 135-43.

    PubMed  Google Scholar 

  7. Faye L, Chrispeels MJ (1985) Anal Biochem 149: 218-24.

    PubMed  Google Scholar 

  8. Tretter V, Altmann F, März L (1991) Eur J Biochem 199: 647-52.

    PubMed  Google Scholar 

  9. Aono S, Sato H, Semba R, Kashiwamata S (1985) Experentia 41: 1084-7.

    Google Scholar 

  10. Theeraslip S, Kurihara (1988) J Biol Chem 263: 11536-9.

    PubMed  Google Scholar 

  11. Takahashi N, Hitosuya H, Hanzawa H, Arata Y, Kurihara Y (1990) J Biol Chem 265: 7793-8.

    PubMed  Google Scholar 

  12. Baenziger JU, Fiete D (1979) J Biol Chem 254: 2400-7.

    PubMed  Google Scholar 

  13. Harthill JE (1991) D. Phil thesis, University of Oxford.

  14. Clarke J, Shannon LM (1976) Biochim Biophys Acta 427: 428-42.

    PubMed  Google Scholar 

  15. Mandal DK, Brewer CF (1992) Biochemistry 31: 12602-9.

    PubMed  Google Scholar 

  16. Ashford D, Dwek RA, Welply JK, Amatayakul S, Homans SW, Lis H, Taylor GN, Sharon N, Rademacher TW (1987) Eur J Biochem 166: 311-20.

    PubMed  Google Scholar 

  17. Chrispeels MJ, Vitale A (1985) Plant Physiol 78: 704-9.

    Google Scholar 

  18. Kubelka V, Altmann F, Staudacher E, Tretter V, März L, Hård K, Kamerling JP, Vligenthart JFG (1993) Eur J Biochem 213: 1193-204.

    PubMed  Google Scholar 

  19. van Kuik JA, Hoffmann RA, Mutsaers JHG, van Halbeek H, Kamerling JP, Vliegenthart JFG (1986) Glycocon J 3: 27-34.

    Google Scholar 

  20. Yang BY, Gray JSS, Montgomery R (1996) Carbohyr Res 287: 203-12.

    Google Scholar 

  21. Altmann F (1997) Glycoconj J 15: 203-6.

    Google Scholar 

  22. Baenziger JU, Fiete D (1979) J Biol Chem 254: 789-95.

    PubMed  Google Scholar 

  23. Altmann F, Kornfeld G, Dalik T, Staudacher E, Glöl J (1993) Glycobiology 3: 619-25.

    PubMed  Google Scholar 

  24. Narasimhan S, Wilson JR, Martin E, Schachter H (1979) Can J Biochem 57: 83-96.

    PubMed  Google Scholar 

  25. Ogata S, Muramatsu T, Kobata A (1975) J Biochem 78: 687-96.

    PubMed  Google Scholar 

  26. Mizuochi T, Amano J, Kobata A (1984) J Biochem 95: 1209-13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breen, K.C., Potratz, A., Georgopoulou, N. et al. The generation and characterization of a rat neural cell line overexpressing the α2,6(N) sialyltransferase. Glycoconj J 15, 199–202 (1998). https://doi.org/10.1023/A:1006980608983

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006980608983

Navigation