Skip to main content
Log in

Mononuclear and binuclear chelates of biacetylmonoxime picolinoylhydrazone

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Mononuclear and binuclear chelates of biacetylmonoxime picolinoylhydrazone (H2BMPcH) with CrIII, FeIII, CoII, NiII, CuII, ZnII, CdII, PdII and UO2 2+ have been prepared. Elemental analyses, molar conductivities, spectral (u.v., visible, i.r., n.m.r., e.s.r.), thermal (t.g., d.t.g., d.t.a.) and magnetic susceptibility measurements have been used to characterize the chelates. The i.r. spectral data indicate that H2BMPcH behaves in a bidentate, tridentate and/or tetradentate manner and the hydrazonic azomethine nitrogen constituents the chelating backbone in all chelates. Based on magnetic and spectroscopic data, the structures for the chelates are proposed as follows: tetrahedral for [Co(HBMPcH)(H2O)]Cl, octahedral for [Co(HBMPcH)2], [Cr(HBMPcH)Cl(H2O)]2Cl2, [Fe(HBMPcH)Cl-(H2O)]2Cl2, [Ni(BMPcH)(H2O)2], square-planar for (Ni(HBMPcH)Cl], [Pd(HBMPcH)Cl], [Cu(HBMPcH)(H2O)]Cl and tetragonally distorted octahedral for [Cu(BMPcH)(H2O)2]2 chelates. Generally, the solid metal acetate complexes have a unique decomposition exotherm profile which can be used as a rapid and sensitive tool for the detection of acetate-containing complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Ludden, V.K. Shah, G.P. Roberts, M. Homer, R. Allen, T. Paustian, J. Roll, R. Chatterjee, M. Madden and J. Allen, Molybdenum Enzymes, Cofactors and Model Systems, American Chemical Society, Washington DC, 1993, p. 196.

    Google Scholar 

  2. E.M. Page and S.A. Wass, Coord. Chem. Rev., 164, 203 (1997).

    Google Scholar 

  3. B.J. Hales, Adv. Inorg. Biochem., 165 (1990).

  4. K.R. Tsai and H.L. Wan, J. Clust. Sci., 6, 485 (1995).

  5. A. Butler and C.J. Carrano, Coord. Chem. Rev., 109, 61 (1991).

    Google Scholar 

  6. B.M. Nikolova and G. St. Nikolov, J. Inorg. Nucl. Chem., 29, 1013 (1967).

  7. R.H. Dunhill and T.D. Smith, J. Chem. Soc. A, 2189 (1968).

  8. Yu.K. Tselinskii, L.V. Shevcheko and I.I. Kusel'man, Ukr. Khim. Zh., 46, 656 (1980).

    Google Scholar 

  9. P.M. Ehde, I. Anderson and L. Pettersson, Acta Chem. Scand., 143, 136 (1989).

    Google Scholar 

  10. S.G. Vul'fson, A.N. Glebov, O. Yu. Tarasov and Yu. I. Sal'nikov, Dokl. Akad. Nauk. SSSR, 314, 386 (1990). H 11. S.P. Arya and P.K. Sharma, J. Indian Chem. Soc., 69, 793 (1992).

  11. T.A. Dyachkova, R.S. Sa®n, A.N. Glebov and G.K. Budnikov, Zh. Neorg. Khim., 38, 482 (1993).

    Google Scholar 

  12. T. Kiss, P. Buglyo, D. Sanna, G. Micera, P. Decock and D. Dewaele, Inorg. Chim. Acta, 239, 145 (1995).

    Google Scholar 

  13. S. Burojevic, I. Shweky, A. Bino, D.A. Summers and R.C. Thompson, Inorg. Chim. Acta, 251, 75 (1996).

    Google Scholar 

  14. Z.H. Zhou, H.L. Wan, S.Z. Hu and K.R. Tsai, Inorg. Chim. Acta, 237, 193 (1995).

    Google Scholar 

  15. V. Murugesan, V. Babu, S. Sankaran, Inorg. Chem., 37, 1336 (1998).

    Google Scholar 

  16. G.I. Fillin and V.N. Markin, Deposited Doc. VINITI 3475±3479, 162 (1975); Chem. Abstr., 88, 57252e (1976).

  17. C. Djordjevic, M. Lee and E. Sinn, Inorg. Chem., 28, 719 (1989).

  18. D.W. Wright, P.A. Humiston, W.H. Orme-Johnson and W.H. Davis, Inorg. Chem., 34, 4194 (1995).

    Google Scholar 

  19. Z.H. Zhou, W.B. Yan, H.L. Wan, K.R. Tsai, J.Z. Wang and S.Z. Hu, J. Chem. Crystallogr., 25, 807 (1995).

    Google Scholar 

  20. D.W. Wright, R.T. Chang, S.K. Mandal, W.H. Armstrong, W.H.Z.H. Zhou, H.L. Wan and K.R. Tsai, Chinese Sci. Bull., 40, 749 (1995).

    Google Scholar 

  21. J.D. Pedrosa de Jesus, M. de D. Farropas, P. O'Brien, R.D. Gillard and P.A. Williams, Transition Met. Chem., 8, 193 (1983).

  22. L.R. Assunbeni, M.L. Niven, J.J. Cruywagen and J.B. B Heyns, J. Crystallogr. Spectrosc. Res., 17, 373 (1987).

    Google Scholar 

  23. N.W. Alcock, M. Dudek, R. Grybos, E. Hodorowicz, A. Kanas and A. Samotus, J. Chem. Soc., Dalton Trans., 707 (1990).

  24. M.A. Porai-Koshits, L.A. Aslanov, G.V. Ivanova and T.V. Polynova, J. Struct. Chem. (Engl. Transl.), 9, 401 (1968).

    Google Scholar 

  25. J.E. Berg, S. BrandaÈnge, L. Lindblom and P.E. Werner, Acta. Chem. Scand. Ser. A., 31, 325 (1977).

    Google Scholar 

  26. Z.H. Zhou, W.B. Yan, H.L. Wan and K.R. Tsai, Chin. J. Struc. Chem., 14, 255 (1995).

    Google Scholar 

  27. J. Kim and D.C. Rees, Biochem., 33, 389 (1994).

  28. E.L. Muetterties and L.J. Guggenberger, J. Am. Chem. Soc., 96, 1748 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakha, T.H. Mononuclear and binuclear chelates of biacetylmonoxime picolinoylhydrazone. Transition Metal Chemistry 24, 659–665 (1999). https://doi.org/10.1023/A:1006936101143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006936101143

Keywords

Navigation