Skip to main content
Log in

Role of the cytoskeleton in adhesion stabilization of human colorectal carcinoma cells to extracellular matrix components under dynamic conditions of laminar flow

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Adhesion stabilization of malignant cells in the microcirculation is necessary for successful metastasis formation. The adhesion of colon carcinoma cells to microcirculation extracellular matrix (ECM) components is mediated, in part, by integrins that can be intracellularly linked to cytoskeletal proteins. Thus the functional status of at least certain integrins can be regulated by complex interactions with cytosolic, cytoskeletal and membrane-bound proteins. Wall shear stress caused by fluid flow also influences cellular functions, such as cell morphology, cytoskeletal arrangements and cell signaling. Using a parallel plate laminar flow chamber dynamic adhesion of human HT-29 colon carcinoma cells to collagen was investigated and compared with cell adhesion under static conditions. Cells were pretreated with cytochalasin D, nocodazole, colchicine or acrylamide to disrupt actin filaments, microtubules or intermediate filaments. Disruption of actin filaments completely inhibited all types of adhesive interactions. In contrast, impairment of tubulin polymerization or disruption of intermediate filaments resulted in different effects on static and dynamic adhesion. Treatment with acrylamide did not interfere with dynamic cell adhesion, whereas under static conditions it partially reduced adhesion rates. Under dynamic conditions increased initial adhesive interactions between HT-29 cells and collagen were found after disruption of microtubules, and the adherent cells demonstrated extensive crawling on collagen surfaces. In contrast, under static adhesion disrupting microtubules did not affect cell adhesion rates. Cytochalasin D and acrylamide were found to inhibit Tyr-phosphorylation of FAK and paxillin, whereas microtubule disrupting agents at low but not high concentrations increased phosphorylation of these focal adhesion proteins. Our results revealed that cytoskeletal components appear to be involved in adhesion stabilization of HT-29 cells to ECM components, and hydrodynamic shear forces modulate this involvement. Tyr-phosphorylation of focal adhesion proteins, such as paxillin and FAK, appears to be a part of this cytoskeleton-mediated process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicolson GL. Cancer metastasis: Tumor cell and host properties important in colonization of specific secondary sites. Biochim Biophys Acta 1988; 948: 175–224.

    PubMed  CAS  Google Scholar 

  2. Nicolson GL. Organ specificity of tumor metastasis: Role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 1988; 7: 143–88.

    Article  PubMed  CAS  Google Scholar 

  3. Chen YP, O'Toole TE, Shipley T et al. ‘Inside-out’ signal transduction inhibited by isolated integrin cytoplasmic domains. J Biol Chem 1994; 269: 18307–10.

    PubMed  CAS  Google Scholar 

  4. Burridge K, Fath K. Focal contacts: Transmembrane links between the extracellular matrix and the cytoskeleton. Bioessays 1989; 10: 104–8.

    Article  PubMed  CAS  Google Scholar 

  5. Horwitz A, Duggan K, Buck C. Interaction of plasma membrane fi-bronectin receptor with talin – a transmembrane linkage. Nature 1986; 320: 531–3.

    Article  PubMed  CAS  Google Scholar 

  6. Chen HC, Appeddu PA, Parsons JT et al. Interaction of focal adhesion kinase with cytoskeletal protein talin. J Biol Chem 1995; 270: 16995–9.

    Article  PubMed  CAS  Google Scholar 

  7. Lo SH, Weisberg E, Chen LB. Tensin: A potential link between the cytoskeleton and signal transduction. Bioessays 1994; 16: 817–23.

    Article  PubMed  CAS  Google Scholar 

  8. Yamada KM, Geiger B. Molecular interactions in cell adhesion complexes. Curr Op Cell Biol 1997; 9: 76–85.

    Article  PubMed  CAS  Google Scholar 

  9. Yamada KM, Miyamoto S. Integrin transmembrane signaling and cytoskeletal control. Curr Op Cell Biol 1995; 7: 681–9.

    Article  PubMed  CAS  Google Scholar 

  10. Jewell K, Kapron-Bras C, Jeevaratnam P et al. Stimulation of tyrosine phosphorylation of distinct proteins in response to antibody-mediated ligation and clustering of α 3 and α 6 integrins. J Cell Sci 1995; 108: 1165–74.

    PubMed  CAS  Google Scholar 

  11. Hanks S, Polte T. Signaling through focal adhesion kinase. Bioessays 1996; 19: 137–45.

    Article  Google Scholar 

  12. Akiyama SK, Yamada SS, Yamada KM, LaFlamme SE. Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras. J Biol Chem 1994; 269: 15961–4.

    PubMed  CAS  Google Scholar 

  13. Weiss L. Biomechanical interactions of cancer cells with the microvasculature during hematogenous metastasis. Cancer Metastasis Rev 1992; 11: 227–35.

    Article  PubMed  CAS  Google Scholar 

  14. Li S, Kim M, Hu YI et al. Fluid shear stress activation of focal adhesion kinase. J Biol Chem 1997; 272: 30455–62.

    Article  PubMed  CAS  Google Scholar 

  15. Yano Y, Geibel J, Sumpio BE. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am J Physiol 1996; 271: C635–49.

    PubMed  CAS  Google Scholar 

  16. Takahashi M, Ishida T, Traub O et al. Mechanotransduction in endothelial cells: Temporal signaling events in response to shear stress. J Vasc Res 1997; 34: 212–9.

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi M, Berk BC. Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase. J Clin Invest 1996; 98: 2623–31.

    PubMed  CAS  Google Scholar 

  18. Resnick N, Yahav H, Khachigian LM et al. Endothelial gene regulation by laminar shear stress. Adv Exp Med Biol 1997; 430: 155–64.

    PubMed  CAS  Google Scholar 

  19. Cucina A, Sterpetti AV, Pupelis G et al. Shear stress induces changes in the morphology and cytoskeleton organization of arterial endothelial cells. Eur J Vasc Endovasc Surg 1995; 9: 86–92.

    Article  PubMed  CAS  Google Scholar 

  20. Patton JT, Menter DG, Benson DM et al. Computerized analysis of tumor cells flowing in a parallel plate chamber to determine their adhesion stabilization lag time. Cell Motil Cytoskeleton 1993; 26: 88–98.

    Article  PubMed  CAS  Google Scholar 

  21. Yun Z, Smith TW, Menter DG et al. Differential adhesion of metastatic RAW1 17 large-cell lymphoma under static conditions: role of the αvβ 3 integrin. Clin Exp Metastasis 1997; 15: 3–11.

    Article  PubMed  CAS  Google Scholar 

  22. Haier J, Nasralla M, Nicolson GL. β 1-integrin mediated dynamic adhesion of colon carcinoma cells to extracellular matrix under laminar flow. Clin Exp Metastasis 1999; 17: 377–88.

    Article  PubMed  CAS  Google Scholar 

  23. Haier J, Nasralla M, Nicolson GL. Different adhesion properties of highly and poorly metastatic HT-29 colon carcinoma cells with extracellular matrix components: Role of integrin expression and cytoskeletal components. Br J Cancer 1999; 80: 1867–74.

    Article  PubMed  CAS  Google Scholar 

  24. Ebert EC. Mechanisms of colon cancer binding to substratum and cells. Dig Dis Sci 1996; 41: 1551–6.

    Article  PubMed  CAS  Google Scholar 

  25. Kadi A, Pichard V, Lehmann M et al. Effects of microtubule disruption on cell adhesion and spreading. Biochem Biophys Res Commun 1998; 246: 690–5.

    Article  PubMed  CAS  Google Scholar 

  26. Haier J, Nasralla M, Buhr HJ, Nicolson GL. Different integrinmediated adhesion of poorly and highly metastatic colon carcinom a cell lines on extracellular matrix. Langenbecks Arch Surg (Suppl) 1998; 115: 307–13.

    CAS  Google Scholar 

  27. Haier J, Nasralla M, Nicolson GL. Influence of phosphotyrosine kinase inhibitors on adhesive properties of highly and poorly metastatic HT-29 colon carcinoma cells to collagen. Int J Colorect Dis 1999; 14: 119–27.

    Article  CAS  Google Scholar 

  28. Tang DG, Diglio CA, Honn KV. Activation of microvascular endothelium by eicosanoid 12(S)-hydroxyeicosatetraenoic acid leads to enhanced tumor cell adhesion via up-regulation of surface expression of αvβ3 integrin: A posttranscriptional, protein kinase C-and cytoskeleton-dependent process. Cancer Res 1994; 54: 1119–29.

    PubMed  CAS  Google Scholar 

  29. Seufferlein T, Rozengurt E. Lysophosphatidic acid stimulates tyrosine phosphorylation of focal adhesion kinase, paxillin and p130. J Biol Chem 1994; 269: 9345–51.

    PubMed  CAS  Google Scholar 

  30. Chopra H, Timar J, Chen YQ et al. The lipoxygenase metabolite 12(S)-HETE induces a cytoskeleton-dependent increase in surface expression of integrin αIIbβ3 on melanoma cells. Int J Cancer 1999; 49: 774–86.

    Google Scholar 

  31. Lawrence MB, McIntire LV, Eskin SG. Effect of flow on polymorphnuclear leukocyte/endothelial cell adhesion. Blood 1987; 70: 1284–90.

    PubMed  CAS  Google Scholar 

  32. Thoumine O, Ziegler T, Girard PR, Nerem RM. Elongation of con-fluent endothelia l cells in culture: The importance of fields of force in the associated alteration s of their cytoskelet al structure. Exp Cell Res 1995; 219: 427–41.

    Article  PubMed  CAS  Google Scholar 

  33. Haimovich B, Lipfert L, Brugge JS, Shattil SJ. Tyrosine phosphorylation and cytoskeletal reorganization in platelets are triggered by interaction of integrin receptors with their immobilized ligands. J Biol Chem 1993; 268: 15868–77.

    PubMed  CAS  Google Scholar 

  34. Sheikh S, Nash GB. Treatment of neutrophils with cytochalasins converts rolling to stationary adhesion on P-selectin. J Cell Physiol 1998; 174: 206–16.

    Article  PubMed  CAS  Google Scholar 

  35. Cucina A, Sterpetti AV, di Carlo A et al. Hemodynamic forces modulate simultaneously the release of growth factors and the organisation of cytoskeleton of aortic smooth muscle-cells. Minerva Cardioangiol 1996; 44: 6376.

    Google Scholar 

  36. Davies PF, Robotewskyj A, Griem ML. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J Clin Invest 1994; 93: 2031–8.

    Article  PubMed  CAS  Google Scholar 

  37. Olivier LA, Yen J, Reichert WM, Truskey GA. Short-term cell/substrate contact dynamics of subconfluent endothelial cells following exposure to laminar flow. Biotechnol Prog 1999; 15: 33–42.

    Article  PubMed  CAS  Google Scholar 

  38. Wang N. Mechanical interactions among cytoskeletal filaments. Hypertension 1998; 32: 162–5.

    PubMed  CAS  Google Scholar 

  39. Defilippi P, Olivo C, Venturino M et al. Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc Res Tech 1999; 47: 67–78.

    Article  PubMed  CAS  Google Scholar 

  40. Ohyashiki K, Tauchi T, Boswell HS et al. Tyrosine phosphorylation and activation of focal adhesion kinase (p125FAK) by BCR-ABL oncoprotein. Exp Hematol 1995; 23: 1153–9.

    PubMed  Google Scholar 

  41. Shattil SJ, Haimovich B, Cunningham M et al. Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem 1994; 269: 14738–45.

    PubMed  CAS  Google Scholar 

  42. Eckert BS, Yeagle PL. Modulation of keratin intermediate filament distribution in vivo by induced changes in cyclic AMP-dependent phosphorylation. Cell Motil Cytoskeleton 1990; 17: 291–300.

    Article  PubMed  CAS  Google Scholar 

  43. Aggeler J, Seely K. Cytoskeletal dynamics in rabbit synovial fi-broblasts: I. Effects of acrylamide on intermediate filaments and microfilaments. Cell Motil Cytoskeleton 1990; 16: 110–20.

    Article  PubMed  CAS  Google Scholar 

  44. Sager PR. Cytoskeletal effects of acrylamide and 2,5-hexanedione: selective aggregation of vimentin filaments. Toxicol Appl Pharmacol 1989; 97: 141–55.

    Article  PubMed  CAS  Google Scholar 

  45. Bershadsky A, Chausovsky A, Becker E. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr Biol 1996; 6: 1279–89.

    Article  PubMed  CAS  Google Scholar 

  46. Malek AM, Izumo S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. Epithelial Cell Biol 1994; 3: 102–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haier, J., Nicolson, G.L. Role of the cytoskeleton in adhesion stabilization of human colorectal carcinoma cells to extracellular matrix components under dynamic conditions of laminar flow. Clin Exp Metastasis 17, 713–721 (1999). https://doi.org/10.1023/A:1006754829564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006754829564

Navigation