Skip to main content

Advertisement

Log in

Substrate Stiffness Mediated Metastasis Like Phenotype of Colon Cancer Cells is Independent of Cell to Gel Adhesion

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Growing experimental evidences suggest that cells can feel and respond to the mechanical stiffness of the substrate on which they adhere. Human colon carcinoma (HCT-8) cells can exhibit a dissociative, metastasis-like phenotype (MLP) in vitro when cultured on extra-cellular matrix (ECM) coated polyacrylamide (PA) hydrogels with appropriate mechanical stiffness (20–47 kPa), but not on very stiff (3.6 GPa) polystyrene substrates. In this study, we ask the question whether similar morphological transition occurs on cell–cell adhesion molecule, i.e., E-cadherin coated PA gels and if so, how the actin cytoskeleton and focal adhesions compare with ECM mediated response on gels. First, we culture the HCT-8 cells on E-cadherin coated PA gels of specific mechanical stiffness (20 kPa) and very stiff glass (~70 GPa) substrates. Interestingly, HCT-8 cells show the distinct dissociative in vitro MLP on 20 kPa gel only (not on stiff glass) on sixth day of culture; slightly earlier than the control (ECM/fibronectin coated 20 kPa gels). The complete inhibition of MLP on E-cadherin coated gels by pharmacological agent, blebbistatin, implicates the involvement of non-muscle myosin II activity in MLP. Confocal laser scanning microscopy and quantitative image analysis results suggest that the actin cytoskeletal architecture was characteristically different near the gel surface of E-cadherin and fibronectin coated gels of similar stiffness before dissociation. Conversely, identical cortical actin only structure was observed in the dissociated cells in both cases. Overall, these results suggest that MLP of HCT-8 cells on PA gels is independent of cell to gel adhesion in 2D in vitro culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aberle, H., S. Butz, J. Stappert, H. Weissig, R. Kemler, and H. Hoschuetzky. Assembly of the cadherin–catenin complex in vitro with recombinant proteins. J. Cell Sci. 107:655–663, 1994.

    Google Scholar 

  2. Abramoff, M. D., P. J. Magalhaes, and S. J. Ram. Image processing with ImageJ. Biophoton. Int. 11(7):36–41, 2004.

    Google Scholar 

  3. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell, Chaps. 16 and 19. New York: Garland Science, 2007.

    Google Scholar 

  4. Bajaj, P., X. Tang, T. Saif, and R. Bashir. Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J. Biomed. Mater. Res. A 95(4):1261–1269, 2010.

    Article  Google Scholar 

  5. Baker, E. L., R. T. Bonnecaze, and M. H. Zaman. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97:1013–1021, 2009.

    Article  Google Scholar 

  6. Baker, E. L., J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys. J. 99:2048–2057, 2010.

    Article  Google Scholar 

  7. Barkan, D., H. Kleinman, J. L. Simmons, H. Asmussen, A. K. Kamaraju, M. J. Hoenorhoff, Z. Y. Liu, S. V. Costes, E. H. Cho, S. Lockett, C. Khanna, A. F. Chambers, and J. E. Green. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68:6241–6250, 2008.

    Article  Google Scholar 

  8. Burdick, M. M., J. M. McCaffery, Y. S. Kim, B. S. Bochner, and K. Konstantopoulos. Colon carcinoma cell glycolipids, integrins, and other glycoproteins mediate adhesion to HUVECs under flow. Am. J. Physiol. Cell Physiol. 284(4):977–987, 2003.

    Article  Google Scholar 

  9. Byfield, F. J., Q. Wen, I. Levental, K. Nordstrom, P. E. Arratia, et al. Absence of filamin a prevents cells from responding to stiffness gradients on gels coated with collagen but not fibronectin. Biophys. J. 96:5095–5102, 2009.

    Article  Google Scholar 

  10. Chaffer, C. L., and R. A. Weinberg. A perspective on cancer cell metastasis. Science 331:1559–1564, 2011.

    Article  Google Scholar 

  11. Choi, J. S., and B. A. Harley. The combined influence of substrate elasticity and ligand density on the viability and biophysical properties of hematopoietic stem and progenitor cells. Biomaterials 33:4460–4468, 2012.

    Article  Google Scholar 

  12. Chopra, A., E. Tabdanov, H. Patel, P. A. Janmey, and J. Y. Kresh. Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. Am. J. Physiol. Heart Circ. Physiol. 300:1252–1266, 2011.

    Article  Google Scholar 

  13. Damljanovic, V., B. C. Lagerholm, and K. Jacobson. Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39:847–851, 2005.

    Article  Google Scholar 

  14. Discher, D., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Article  Google Scholar 

  15. Engler, A. J., C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang, D. W. Speicher, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121:3794–3802, 2008.

    Article  Google Scholar 

  16. Engler, A. J., F. Rehfeldt, S. Sena, and D. E. Discher. Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol. 83:521–545, 2007.

    Article  Google Scholar 

  17. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  Google Scholar 

  18. Farman, G. P., K. Tachampa, R. Mateja, O. Cazorla, A. Lacampagne, and P. P. de Tombe. Blebbistatin: use as inhibitor of muscle contraction. Eur. J. Physiol. 455:995–1005, 2008.

    Article  Google Scholar 

  19. Georges, P. C., and P. A. Janmey. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98:1547–1553, 2005.

    Article  Google Scholar 

  20. Guo, W. H., M. T. Frey, N. A. Burnham, and Y. L. Wang. Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90:2213–2220, 2006.

    Article  Google Scholar 

  21. Hayes, A. W. Principles and Methods of Toxicology. New York: Raven Press, pp. 1231–1258, 1994.

    Google Scholar 

  22. Ingber, D. E. Can cancer be reversed by engineering the tumor microenvironment? Semin. Cancer Biol. 18:356–364, 2008.

    Article  Google Scholar 

  23. Jay, P. Y., P. A. Pham, S. A. Wong, and E. L. Elson. A mechanical function of myosin II in cell motility. J. Cell Sci. 108:387–393, 1995.

    Google Scholar 

  24. Jou, T. S., D. B. Stewart, J. Stappert, W. J. Nelson, and J. A. Marrs. Genetic and biochemical dissection of protein linkages in the cadherin–catenin complex. Proc. Natl. Acad. Sci. USA 92:5067–5071, 1995.

    Article  Google Scholar 

  25. Kovacs, M., J. Toth, C. Hetenyi, A. Malnasi-Csizmadia, and J. R. Sellers. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279:35557–35563, 2004.

    Article  Google Scholar 

  26. Kumar, S., and V. M. Weaver. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28:113–127, 2009.

    Article  Google Scholar 

  27. le Duc, Q., Q. Shi, I. Blonk, A. Sonnenberg, N. Wang, D. Leckband, and J. de Rooij. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189(7):107–115, 2010.

    Google Scholar 

  28. Leckband, D. E., Q. le Duc, N. Wang, and J. de Rooij. Mechanotransduction at cadherin-mediated adhesions. Curr. Opin. Cell Biol. 23:523–530, 2011.

    Article  Google Scholar 

  29. Levental, I., P. C. Georges, and P. A. Janmey. Soft biological materials and their impact on cell function. Soft Matter 3:299–306, 2007.

    Article  Google Scholar 

  30. Levental, K. R., H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. Fong, K. Csiszar, A. Giaccia, W. Weninger, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906, 2009.

    Article  Google Scholar 

  31. Li, D., J. Zhou, L. Wang, M. E. Shin, P. Su, et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J. Cell Biol. 191:631–644, 2010.

    Article  Google Scholar 

  32. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.

    Article  Google Scholar 

  33. Mason, B. N., A. Starchenko, R. M. Williams, L. J. Bonassar, and C. A. Reinhart-King. Tuning 3D collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater. 9:4635–4644, 2013.

    Article  Google Scholar 

  34. Ochsner, M., M. Textor, V. Vogel, and M. L. Smith. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape. PLoS ONE 5(3):e9445, 2010. doi:10.1371/journal.pone.0009445.

    Article  Google Scholar 

  35. Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.

    Article  Google Scholar 

  36. Pathak, A., and S. Kumar. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr. Biol. 3(4):267–278, 2011.

    Article  Google Scholar 

  37. Pathak, A., and S. Kumar. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl. Acad. Sci. USA 109(26):10334–10339, 2012.

    Article  Google Scholar 

  38. Pelham, R. J., and Y. L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94(25):3661–3665, 1997.

    Article  Google Scholar 

  39. Pelham, Jr., J. R., and Y. L. Wang. High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol. Biol. Cell 10:935–945, 1999.

    Article  Google Scholar 

  40. Radmacher, M. Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol. 68:67–90, 2002.

    Article  Google Scholar 

  41. Rosenthal, K. L., W. A. Tompkins, G. L. Frank, P. McCulloch, and W. E. Rawls. Variants of a human colon adenocarcinoma cell line which differ in morphology and carcinoembryonic antigen production. Cancer Res. 37:4024–4030, 1977.

    Google Scholar 

  42. Saif, T. On the capillary interaction between solid plates forming menisci on the surface of a liquid. J. Fluid Mech. 473:321–347, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  43. Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453–4461, 2007.

    Article  Google Scholar 

  44. Straight, A. F., A. Cheung, J. Limouze, I. Chen, N. J. Westwood, J. R. Sellers, and T. J. Mitchison. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 229:1743–1747, 2003.

    Article  Google Scholar 

  45. Tang, X., M. Y. Ali, and T. Saif. A novel technique for micro-patterning proteins and cells on polyacrylamide gels. Soft Matter 8:3197–3206, 2012.

    Google Scholar 

  46. Tang, X., P. Bajaj, R. Bashir, and T. Saif. How far cardiac cells can see each other mechanically. Soft Matter 7:6151–6158, 2011.

    Article  Google Scholar 

  47. Tang, X., T. Cappa, T. Kuhlenschmidt, M. Kuhlenschmidt, and T. Saif. Specific and non-specific adhesion in cancer cells with various metastatic potentials. In: Mechanobiology of Cell–Cell and Cell–Matrix Interactions, edited by A. W. Johnson, and B. Harley. New York: Springer Science, 2011, pp. 105–122.

    Chapter  Google Scholar 

  48. Tang, X., T. B. Kuhlenschmidt, J. Zhou, P. Bell, F. Wang, M. S. Kuhlenschmidt, and T. Saif. Mechanical force affects expression of an in vitro metastasis-like phenotype in HCT-8 cells. Biophys. J. 99:2460–2469, 2010.

    Article  Google Scholar 

  49. Tilghman, R. W., C. R. Cowan, J. D. Mih, Y. Koryakina, D. Gioeli, et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS ONE 5(9):e12905, 2010. doi:10.1371/journal.pone.0012905.

    Article  Google Scholar 

  50. Twiss, F., Q. le Duc, S. van der Horst, H. Tabdili, G. van der Krogt, N. Wang, H. Rehmann, S. Huveneers, D. E. Leckband, and J. de Rooij. Vinculin-dependent Cadherin mechanosensing regulates efficient epithelial barrier formation. Biol. Open. 1(11):1128–1140, 2012.

    Article  Google Scholar 

  51. Ulrich, T. A., E. M. de Juan Pardo, and S. Kumar. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69:4167–4174, 2009.

    Article  Google Scholar 

  52. Vermeulen, S. J., E. A. Bruyneel, M. E. Bracke, G. K. De Bruyne, K. M. Vennekens, K. L. Vleminckx, G. J. Berx, F. M. Van Roy, and M. M. Mareel. Transition from the noninvasive to the invasive phenotype and loss of a-Catenin in human colon cancer cells. Cancer Res. 55:4722–4728, 1995.

    Google Scholar 

  53. Vermeulen, S. J., T. R. Chen, F. Speleman, F. Nollet, F. M. Van Roy, and M. M. Mareel. Did the four human cancer cell lines DLD-1, HCT-15, HCT-8, and HRT-18 originate from one and the same patient? Cancer Genet. Cytogenet. 107:76–79, 1998.

    Article  Google Scholar 

  54. Vermeulen, S. J., F. Nollet, E. Teugels, K. M. Vennekens, F. Malfait, J. Philippe, F. Speleman, M. E. Bracke, F. M. Van Roy, and M. M. Mareel. The alpha-E-catenin gene (CTNNA1) acts as an invasion-suppressor gene in human colon cancer cells. Oncogene 18:905–915, 1999.

    Article  Google Scholar 

  55. Wang, H. B., M. Dembo, and Y. L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell. Physiol. 279:1345–1350, 2000.

    Google Scholar 

  56. Wang, Y. L., and R. Pelham. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998.

    Article  Google Scholar 

  57. Yamada, Y., F. Katagiri, K. Hozumi, Y. Kikkawa, and M. Nomizu. Cell behavior on protein matrices containing laminin α1 peptide AG73. Biomaterials 32(19):4327–4335, 2011.

    Article  Google Scholar 

  58. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet 60:24–34, 2005.

    Article  Google Scholar 

  59. Yonemura, S., Y. Wada, T. Watanabe, A. Nagafuchi, and M. Shibata. Alpha-catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12:533–542, 2010.

    Article  Google Scholar 

  60. Yu, W., A. Datta, P. Leroy, L. E. O’Brien, G. Mak, T. S. Jou, et al. β1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell 16(2):433–445, 2005.

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the National Science Foundation ECCS Grant 10-02165, and the Interdisciplinary Innovation Initiative Program, University of Illinois Grant 12035. M.Y. A. was funded at UIUC from NIH National Cancer Institute Alliance for Nanotechnology in Cancer ‘Midwest Cancer Nanotechnology Training Center’ Grant R25 CA154015A. Atomic force microscopy (AFM) experiments were carried out with the help of Dr. Scott Maclaren at the Frederick Seitz Materials Research Laboratory (MRL), UIUC. Immnunostaining and confocal microscopy imaging were carried out at the Institute for Genomic Biology (IGB), UIUC with the help of Dr. Mayandi Sivaguru. M.Y.A. acknowledges the discussions with W. Ahmed, S. V. Anand and A. Tofangchi of UIUC about the experiments. Assistance in gel preparation, imaging and image processing by Mr. Paul Kim, Mr. Christopher Nemeh, and Mr. Chih-Yuan Chuang of UIUC is gratefully acknowledged.

Conflict of Interest

M.Y.A. and M.T.A.S. declare that they have no conflicts of interest.

Ethical Standards

No human studies or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taher A. Saif.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26909 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.Y., Saif, M.T.A. Substrate Stiffness Mediated Metastasis Like Phenotype of Colon Cancer Cells is Independent of Cell to Gel Adhesion. Cel. Mol. Bioeng. 7, 532–543 (2014). https://doi.org/10.1007/s12195-014-0345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0345-8

Keywords

Navigation