Skip to main content
Log in

Thermophysical Properties of Gaseous HBr and BCl3 from Speed-of-Sound Measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The speed of sound in gaseous hydrogen bromide (HBr) and boron trichloride (BCl3) was measured using a highly precise acoustic resonance technique. The HBr speed-of-sound measurements span the temperature range 230 to 440 K and the pressure range from 0.05 to 1.5 MPa. The BCl3 speed-of-sound measurements span the temperature range 290 to 460 K and the pressure range from 0.05 MPa to 0.40 MPa. The pressure range in each fluid was limited to 80% of the sample vapor pressure at each temperature. The speed-of-sound data have a relative standard uncertainty of 0.01%. The data were analyzed to obtain the ideal-gas heat capacities as a function of temperature with a relative standard uncertainty of 0.1%. The heat capacities agree with those calculated from spectroscopic data within their combined uncertainties. The speeds of sound were fitted with the virial equation of state to obtain the temperature-dependent density virial coefficients. Two virial coefficient models were employed, one based on the hard-core square-well intermolecular potential model and the second based on the hard-core Lennard–Jones intermolecular potential model. The resulting virial equations of state reproduced the speed-of-sound measurements to 0.01% and can be expected to calculate vapor densities with a relative standard uncertainty of 0.1%. Transport properties calculated from the hard-core Lennard–Jones potential model should have a relative standard uncertainty of 10% or less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 95:5236 (1991).

    Google Scholar 

  2. K. A. Gillis, Int. J. Thermophys. 18:73 (1997).

    Google Scholar 

  3. J. J. Hurly, Int. J. Thermophys. 20:455 (1999).

    Google Scholar 

  4. K. A. Gillis, Int. J. Thermophys. 15:821 (1994).

    Google Scholar 

  5. K. A. Gillis, A. R. H. Goodwin, and M. R. Moldover, Rev. Sci. Instrum. 62:2213 (1991).

    Google Scholar 

  6. J. J. Hurly, submitted for publication (1999).

  7. D. R. Stull, Ind. Eng. Chem. 39:517 (1947).

    Google Scholar 

  8. J. F. Mathews, Chem. Rev. 72:71 (1972).

    Google Scholar 

  9. R. E. Lynn, Jr. and K. A. Kobe, Chem. Rev. 52:117 (1953).

    Google Scholar 

  10. J. E. Mayer and M. G. Mayer, Statistical Mechanics (John Wiley & Sons, New York, 1959), p. 469.

    Google Scholar 

  11. K. A. Gillis and M. R. Moldover, Int. J. Thermophys. 17:1305 (1996).

    Google Scholar 

  12. T. Kihara, Rev. Mod. Phys. 25:831 (1953).

    Google Scholar 

  13. C. G. Maitland and E. B. Smith, Chem. Phys. Lett. 22:443 (1973).

    Google Scholar 

  14. J. P. M. Trusler, Int. J. Thermophys. 18:635 (1997).

    Google Scholar 

  15. E. A. Mason and T. H. Spurling, The Virial Equation of State (Pergamaon Press, Oxford, 1969).

    Google Scholar 

  16. R. J. Dulla, J. S. Rowlinson, and W. R. Smith, Mol. Phys. 21:229 (1971).

    Google Scholar 

  17. B. M. Axilrod and E. J. Teller, J. Chem. Phys. 11:299 (1943).

    Google Scholar 

  18. L. A. Weber, Int. J. Thermophys. 15:461 (1994).

    Google Scholar 

  19. K. S. Pitzer and R. F. Curl, Jr., J. Am. Chem. Soc. 79:2369 (1957).

    Google Scholar 

  20. Tsonopolulos, AIChE J. 24:1112 (1978).

    Google Scholar 

  21. N. Van Nhu, G. A. Iglesias-Silva, and F. Kohler, Ber. Bunsenges. Phys. Chem. 93:526 (1989).

    Google Scholar 

  22. N. Van Nhu and F. Kohler, Ber Bunsenges Phys. Chem. 92:1129 (1988).

    Google Scholar 

  23. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, New York, 1954).

    Google Scholar 

  24. A. E. Schuil, Phil. Mag. 28:679 (1939).

    Google Scholar 

  25. Matheson Gas Data Book, unabridged ed. (Matheson Company, East Rutherford, NJ, 1974).

  26. R. A. Suehla, NASA-TR-R-132 116:57, 79 (1962).

    Google Scholar 

  27. T. S. Ro, J. Kestin, and J. M. Hellemans, Physica 65 (1973).

  28. K. Veda and K. Kigoshi, J. Inorg. Nucl. Chem. 36:989 (1974).

    Google Scholar 

  29. W. A. Wakeham, H. E. Khalifa, and J. K. Esti, J. Chem. Phys. 65:5186 (1976).

    Google Scholar 

  30. A. Eucken, Phys. Z. 14:324 (1913).

    Google Scholar 

  31. JANAF Thermochemical Tables, 2nd ed., NSRDS-NBS 37 (U.S. Department of Commerce, Washington, DC, 1971).

  32. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 3rd ed. (McGraw-Hill, New York, 1977).

    Google Scholar 

  33. K. A. Gillis, J. B. Mehl, and M. R. Moldover, Rev. Sci. Instrum. 67:1850 (1996).

    Google Scholar 

  34. BYU DIPPR801 Thermophysical Properties Database, Spring 1998 Preview Release (Brigham Young University, Provo, UT 84602).

  35. E. W. Lemmon, M. O. McLinden, and D. G. Friend, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, W. G. Mallard and P. J. Linstrom, eds. (National Institute of Standards and Technology, Gaithersburg, MD, Nov. 1998) (http://webbook.nist.gov).

    Google Scholar 

  36. B. J. McBride, S. Gordon, and M. A. Reno, Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species, NASA Report TM-8209 4513 (1993).

  37. E. F. Westrum, D. R. Stull, and G. C. Sinke, The Chemical Thermodynamics of Organic Compounds (John Wiley and Sons, New York, 1969).

    Google Scholar 

  38. A. R. Gordon and C. Barnes, J. Chem. Phys. 1:692 (1933).

    Google Scholar 

  39. E. G. Long and K. A. Kobe, Petrol. Refin. 29:124 (1950).

    Google Scholar 

  40. J. B. Austin, J. Am. Chem. Soc. 54:3459 (1932).

    Google Scholar 

  41. JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data Suppl. 1:14 (1985).

  42. Thermodynamic Properties of Individual Substances, 4th ed., Vol 2. Elements Carbon, Silicon, Germanium, Tin, Lead, and Their Compounds, Pt. 2. Tables (Hemisphere, New York, 1991).

  43. D. Wagman, R. Schumm, V. Parker, R. Nuttall, I. Halow, W. Evans, K. Churney, and S. Bailey, J. Phys. Chem. Ref. Data Suppl. 2 (1982).

  44. D. R. Lide (ed.), Handbook of Chemistry and Physics, 75th ed. (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurly, J.J. Thermophysical Properties of Gaseous HBr and BCl3 from Speed-of-Sound Measurements. International Journal of Thermophysics 21, 805–829 (2000). https://doi.org/10.1023/A:1006627306105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006627306105

Navigation