Skip to main content

Advertisement

Log in

Density, Speed of Sound, Compressibility and Related Excess Properties of Methane + n-Heptane at T = 303.15 K and p = 10 to 70 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Density and speed of sound of methane + n-heptane binary mixtures were measured at a temperature equal to 303.15 K and at pressures ranging from 10 MPa to 70 MPa. The measurements were performed in pure n-heptane and eight different mixtures with methane molar percentage ranging from 20 % to 95 %. Speed of sound data was obtained by a pulse-echo technique working at 3 MHz whereas density data were acquired from a vibrating U-tube densimeter. Isothermal and isentropic compressibilities were derived from both measurements in the same conditions. Finally, partial molar volumes, excess molar volume, excess isothermal compressibility as well as excess speed of sound and excess isentropic compressibility were estimated at the same conditions and the relative excess properties were represented as a function of methane content. From these measurements, it was observed that the large difference in compressibility of pure components provoked significant deviations to ideal behavior with relative excess values that can reach − 20 %, − 100 % and 200 % of the ideal properties for molar volume, isothermal compressibility and speed of sound, respectively. Moreover, a small clustering effect at high dilution of n-heptane at 30 MPa was brought forth to light by evaluating the partial molar volumes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of Data and Materials

All the data are given in the manuscript.

References

  1. M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 102, 2569 (1998)

    Google Scholar 

  2. E. Flöter, T.W. de Loos, J. de Swaan Arons, Int. J. Thermophys. 16, 185 (1995)

    ADS  Google Scholar 

  3. H. Quinteros-Lama, F. Llovell, J. Supercrit. Fluids 111, 151 (2016)

    Google Scholar 

  4. J.F. Arnaud, P. Ungerer, E. Behar, G. Moracchini, J. Sanchez, Fluid Phase Equilib. 124, 177 (1996)

    Google Scholar 

  5. J.H. Dymond, K.J. Young, J.D. Isdale, J. Chem. Thermodyn. 11, 887 (1979)

    Google Scholar 

  6. T. Regueira, G. Pantelide, W. Yan, E.H. Stenby, Fluid Phase Equilib. 428, 48 (2016)

    Google Scholar 

  7. J.L. Daridon, B. Lagourette, P. Xans, F. Montel, J. Pet. Sci. Eng. 19, 281 (1998)

    Google Scholar 

  8. E. Aicart, N.K. Kumaran, C.J. Halpin, G.C. Benson, J. Chem. Thermodyn. 15, 919 (1983)

    Google Scholar 

  9. G.C. Benson, C.J. Halpin, N.K. Kumaran, J. Chem. Thermodyn. 18, 1147 (1986)

    Google Scholar 

  10. G.C. Benson, C.J. Halpin, Can. J. Chem. 65, 322 (1987)

    Google Scholar 

  11. J.D. Pandey, P. Jain, V. Vyas, Can. J. Chem. 72, 2486 (1994)

    Google Scholar 

  12. A. Tourino, M. Hervello, V. Moreno, M. Iglesias, G. Marino, Phys. Chem. Liq. 42, 37 (2004)

    Google Scholar 

  13. M. Gepert, S. Ernst, J. Solut. Chem. 32, 831 (2003)

    Google Scholar 

  14. T. Takagi, H. Teranishi, Fluid Phase Equilib. 20, 315 (1985)

    Google Scholar 

  15. S. Ye, B. Lagourette, J. Alliez, H. Saint-Guirons, P. Xans, F. Montel, Fluid Phase Equilib. 74, 177 (1992)

    Google Scholar 

  16. M. Dzida, M. Cempa, J. Chem. Thermodyn. 40, 1531 (2008)

    Google Scholar 

  17. T.S. Khasanshin, V.S. Samuilov, A.P. Shchemelev, High Temp. 47, 527 (2009)

    Google Scholar 

  18. T.S. Khasanshin, V.S. Samuilov, A.P. Shchamialiou, High Temp. High Press. 39, 321 (2010)

    Google Scholar 

  19. T.S. Khasanshin, V.S. Samuilov, A.P. Shchemelev, F.M. Mosbach, J. Eng. Phys. Thermophys. 83, 1043 (2010)

    Google Scholar 

  20. T.S. Khasanshin, V.S. Samuilov, A.P. Shchemelev, High Temp. 48, 665 (2010)

    Google Scholar 

  21. T.S. Khasanshin, N.V. Golubeva, V.S. Samuilov, A.P. Shchemelev, J. Eng. Phys. Thermophys. 87, 213 (2014)

    Google Scholar 

  22. B. Lagourette, J.L. Daridon, J.F. Gaubert, P. Xans, J. Chem. Thermodyn. 26, 1051–1061 (1994)

    Google Scholar 

  23. C.D. Holcomb, S.L. Outcalt, Fluid Phase Equilib. 150–151, 815 (1998)

    Google Scholar 

  24. C. Bouchot, D. Richon, Fluid Phase Equilib. 191, 189 (2001)

    Google Scholar 

  25. E.F. May, W.J. Tay, M. Nania, A. Aleji, S. Al-Ghafri, J.P.M. Trusler, Rev. Sci. Instrum. 85, 095111 (2014)

    ADS  Google Scholar 

  26. E.F. May, W.J. Tay, M. Nania, A. Aleji, S. Al-Ghafri, J.P.M. Trusler, Rev. Sci. Instrum. 86, 049902 (2015)

    ADS  Google Scholar 

  27. W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002)

    ADS  Google Scholar 

  28. R. Span, E.W. Lemmon, R.T. Jacobsen, W. Wagner, A. Yokozeki, J. Phys. Chem. Ref. Data 29, 1361 (2000)

    ADS  Google Scholar 

  29. JCGM 101:2008. Evaluation of measurement data—Supplement 1 to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions using a Monte Carlo method

  30. J.P. Bazile, D. Nasri, A.W. Saley Hamani, G. Galliero, J.L. Daridon, J. Supercrit. Fluids. 140, 218 (2018)

    Google Scholar 

  31. J.P. Bazile, D. Nasri, J.L. Daridon, J. Chem. Eng. Data 62, 1708 (2017)

    Google Scholar 

  32. V.A. Del Grosso, C.W. Mader, J. Acoust. Soc. Am. 52, 1442 (1972)

    ADS  Google Scholar 

  33. W. Marczak, J. Acoust. Soc. Am. 102, 2776 (1997)

    ADS  Google Scholar 

  34. W.D. Wilson, J. Acoust. Soc. Am. 31, 1067 (1959)

    ADS  Google Scholar 

  35. S. Vance, J.M. Brown, J. Acoust. Soc. Am. 127, 174 (2010)

    ADS  Google Scholar 

  36. U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061 (1991)

    ADS  Google Scholar 

  37. R. Span, W. Wagner, Int. J. Thermophys. 24, 41 (2003)

    Google Scholar 

  38. H.H. Reamer, B.H. Sage, W.N. Lacey, Chem. Eng. Data Ser. 1, 29 (1956)

    Google Scholar 

  39. D.S. Robertson, C.R. Clark, G. Swift, Soc. Pet. Eng. J. 9, 338 (1969)

    Google Scholar 

  40. H.H. Reamer, B.H. Sage, J. Chem. Eng. Data 4, 98 (1959)

    Google Scholar 

  41. C.A. Eckert, D.H. Ziger, K.P. Johnston, T.K. Ellison, Fluid Phase Equilib. 14, 167 (1983)

    Google Scholar 

  42. C.A. Eckert, D.H. Ziger, K.P. Johnston, S. Kim, J. Phys. Chem. 90, 2738 (1986)

    Google Scholar 

  43. P.G. Debenedetti, Chem. Eng. Sci. 42, 2203 (1987)

    Google Scholar 

  44. D.B. McGuigan, P.A. Monson, Fluid Phase Equilib. 57, 227 (1990)

    Google Scholar 

  45. R.S. Wu, L.L. Lee, H.D. Cochrant, Ind. Eng. Chem. Res. 29, 977 (1990)

    Google Scholar 

  46. A.W. Saley Hamani, H. Hoang, T.Q. Quoc Viet, J.L. Daridon, G. Galliero, J. Supercrit. Fluids. 164, 104890 (2020)

    Google Scholar 

  47. J.G. Kirkwood, F.P. Buff, Fluid Phase Equilib. 52, 347 (1989)

    Google Scholar 

  48. E.S. Balankina, High Temp. 47, 56 (2009)

    Google Scholar 

  49. J.L. Daridon, J.P. Bazile, J. Chem. Eng. Data 63, 2162 (2018)

    Google Scholar 

  50. L.J. Hudleston, Trans. Faraday Soc. 33, 97 (1937)

    Google Scholar 

  51. F.D. Murnaghan, Proc Natl Acad Sci USA. 30, 244 (1944)

    ADS  Google Scholar 

  52. G.Z. Tammann, Phys. Chem. 17, 620–636 (1895)

    Google Scholar 

  53. M. Benedict, G. Webb, L.C. Rubin, J. Chem. Phys. 10, 747 (1942)

    ADS  Google Scholar 

  54. J.W.M. Boelhouwer, Phys. A 34, 484 (1967)

    ADS  Google Scholar 

  55. J.L. Daridon, B. Lagourette, A. Lagrabette, Phys. Chem. Liq. 37, 137 (1999)

    Google Scholar 

  56. M. Dzida, S.S. Ernst, J. Chem. Eng. Data 48, 1453 (2003)

    Google Scholar 

  57. F. Yebra, J. Troncoso, L. Romaní, J. Chem. Thermodyn. 104, 102 (2017)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Daridon.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazile, JP., Nasri, D., Hoang, H. et al. Density, Speed of Sound, Compressibility and Related Excess Properties of Methane + n-Heptane at T = 303.15 K and p = 10 to 70 MPa. Int J Thermophys 41, 115 (2020). https://doi.org/10.1007/s10765-020-02694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02694-9

Keywords

Navigation