Skip to main content
Log in

Regeneration of somatic embryos and roots from quince leaves cultured on media with different macroelement composition

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The effects of different macroelement combinations on somatic embryogenesis of quince (Cydonia oblonga Mill.) were tested. Leaves were excised from shoot cultures of quince clones and cultured on macroelement combinations of 8 different growth media. Callus production varied depending on the medium and the clone combinations. The influence of genotype and macronutrient combination on somatic embryo and root regeneration was also observed. Clone BA 29 showed the highest embryogenic properties and Murashige and Skoog-based medium appeared to be the most favourable for somatic embryo formation. Root regeneration was higher on Woody Plant Medium and Schenck and Hildebrandt-based media. Interactive effects between genotypes and macroelement combinations were also detected both for embryo and root formation. In all treatments, somatic embryos underwent early developmental arrest and failed to convert into plants. Differences in embryo and root regeneration observed among macroelement combinations may be ascribable to different levels of medium nitrogen and probably to the ratio between nitrate and ammonium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV & Yamada Y (eds) Handbook of Plant Cell Culture, Vol l (pp 82–123). New York: Macmillan

    Google Scholar 

  • Antonelli M (1995) The regenerative ability of quince BA 29 in vitro. Adv. Hort Sci 9: 3–6

    Google Scholar 

  • Baker BS & Bhatia SK (1993) Factors affecting adventitiuos shoot regeneration from leaf explants of quince (Cydonia oblonga). Plant Cell Tiss Org Cult 35: 273–277

    Article  CAS  Google Scholar 

  • Briskin D & Hanson JB (1992) How does the plant plasma membrane HC-ATPase pump protons? J Exp Bot 43: 269–289

    CAS  Google Scholar 

  • Brown S, Wetherell DF & Dougall DK (1976) The potassium requirement for growth and embryogenesis in wild carrot suspension cultures. Physiol Plant 37: 73–79

    Article  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signalling. Annu. Rev. Plant Physiol Plant Mol Biol 46: 95–122

    Article  CAS  Google Scholar 

  • D'Onofrio C, Loreti F & Morini S (1997) Effect of cold treatments on somatic embryogenesis of quince BA 29. North Am. Reg Plant Prop. 9: 17–20

    Google Scholar 

  • D'Onofrio C, Morini S & Bellocchi G (1998) Effect of light quality on somatic embryogenesis of quince leaves. Plant Cell Tiss Org Cult 53: 91–98

    Article  Google Scholar 

  • Driver JA & Kuniyuki AH (1984) In vitro propagation of paradox walnut rootstock. HortSci 19: 507–509

    Google Scholar 

  • Dussert S, Verdeil JL & Buffard-Morel J (1995) Specific nutrient uptake during initiation of somatic embryogenesis in coconut calluses. Plant Sci. 111: 229–236

    Article  CAS  Google Scholar 

  • Etienne H, Lartaud MP, Carron MP & Michaux-Ferrière N (1997) Use of calcium to optimize long-term proliferation of friable embryogenic calluses and plant regeneration in Hevea brasiliensis (Mull. Arg.). J Exp Bot 48: 129–137

    CAS  Google Scholar 

  • George EF & Sherrington PD (1984) Plant Propagation by Tissue Culture. Edington, UK; Exegetics Ltd

    Google Scholar 

  • Gamborg OL, Miller RA & Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Gleddie S, Keller W & Setterfield G (1983) Somatic embryogenesis and plant regeneration from leaf explants and cell suspensions of Solanum melongena L. (eggplant). Can. J. Bot. 61: 656–666

    CAS  Google Scholar 

  • Henry Y, Vain P & DeBuyser J (1994) Genetic analysis of in vitro plant tissue culture responses and regeneration capacities. Euphytica 79: 45–58

    Article  Google Scholar 

  • Linsmaier EM & Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18: 100–127

    Article  CAS  Google Scholar 

  • Lloyd G & McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Intern. Plant Prop Soc Proc 30: 421–427

    Google Scholar 

  • Meijer EGM & Brown DCW (1987) Role of exogenous reduced nitrogen and sucrose in rapid high frequency somatic embryogenesis in Medicago sativa. Plant Cell Tiss Org Cult 10: 11–19

    Article  CAS  Google Scholar 

  • Morini S & Sciutti R (1991) In vitro propagation of quince clonal rootstocks. Agr Med 121: 56–59

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nitsch JP & Nitsch C (1969) Haploid plants from pollen grains. Science 163: 85–87

    PubMed  Google Scholar 

  • Onay A, Jeffree CE & Yeoman MM (1995) Somatic embryogenesis in cultured immature kernels of Pistachio, Pistacia vera L. Plant Cell Rep 15: 192–195

    Article  CAS  Google Scholar 

  • Orlikowska T (1992) Effects of mineral composition and acidity of media, saccharose level, brand and quantity of agar on rooting of fruit rootstocks in vitro. Biol Plant 34: 45–52

    Article  CAS  Google Scholar 

  • Quoirin M & Lepoivre P (1977) Improved media for in vitro culture of Prunus sp. Acta Hort 78: 437–442

    Google Scholar 

  • Schenck RU & Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204

    Google Scholar 

  • Shetty K & McKersie BD (1993) Proline, tioproline and potassium mediated stimulation of somatic embryogenesis in alfalfa (Medigaco sativa L.) Plant Sci 88: 185–193

    Article  CAS  Google Scholar 

  • Silva P & Ricardo CPP (1992) Beta-fructosidases and in vitro dedifferentiation-redifferentiation of carrot cells. Phytochemistry 31: 1507–1511

    Article  CAS  Google Scholar 

  • Sriskandarajah S, Skirvin RM & Abu-Qaoud H (1990) The effect of some macronutrients on adventitious root development on scion apple cultivars in vitro. Plant Cell Tiss Org Cult 21: 185–189

    Article  CAS  Google Scholar 

  • Taylor NJ, Edwards M, Kiernan RJ, Davey CDM, Blakesley D & Henshaw GG (1996) Development of friable embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz). Nature Bio 14: 726–730

    Article  CAS  Google Scholar 

  • Tazawa M & Reinert J (1969) Extracellular and intracellular chemical environments in relation to embryogenesis in vitro. Protoplasma 68: 157–173

    Article  PubMed  CAS  Google Scholar 

  • Thengane SR, Joshi MS, Khuspe SS & Mascarenhas AF (1994) Anther culture in Helianthus annuus L., influence of genotype and culture conditions on embryo induction and plant regeneration. Plant Cell Rep 13: 222–226

    Article  CAS  Google Scholar 

  • Thomas E & Street HE (1972) Factors influencing morphogenesis in excised roots and suspension culture of Atropa belladona. Ann Bot 36: 239–247

    Google Scholar 

  • Timmers ACJ & Schel JHN (1991) Localization of cytosolic Ca2+ during carrot somatic embryogenesis using confocal scanning laser microscopy. In: Karsenn CM, van Loon LC & Vreugdenhil D (eds) Progress in Plant Growth Regulation, (pp 347–353). Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  • Trigiano RN, May RA & Conger BV (1992) Reduced nitrogen influences somatic embryo quality and plant regeneration from suspension cultures of orchardgrass. In Vitro Cell Dev. Biol. 28P: 187–191

    Google Scholar 

  • Vinterhalter D & Vinterhalter B (1992) Effect of inorganic nutrition on the formation of lateral roots in Dracaena fragrans Ker-Gawl cultured in vitro. Plant Cell Tiss Org Cult 28: 267–264

    Article  CAS  Google Scholar 

  • Walker KA & Sato SJ (1981) Morphogesis in callus tissue of Medicago sativa: the role of ammonium ion in somatic embryogenesis. Plant Cell Tiss Org Cult 1: 109–121

    Article  CAS  Google Scholar 

  • Wetherell DF & Dougall DK (1976) Sources of nitrogen supporting growth and embryogenesis in cultured wild carrot tissue. Physiol Plant 37: 97–103

    Article  CAS  Google Scholar 

  • White PR (1963) The Cultivation of Animal and Plant Cells, 2nd edn. New York: Ronald Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisichella, M., Silvi, E. & Morini, S. Regeneration of somatic embryos and roots from quince leaves cultured on media with different macroelement composition. Plant Cell, Tissue and Organ Culture 63, 101–107 (2000). https://doi.org/10.1023/A:1006407803660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006407803660

Navigation