Skip to main content
Log in

Geldanamycin as a Potential Anti-Cancer Agent: Its Molecular Target and Biochemical Activity

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Heat shock protein 90 is one of the most abundantcellularproteins. Although its functions are still being characterized,itappears to serve as a chaperone for a growing list of cellsignaling proteins, including many tyrosine and serine/threoninekinases, involved in proliferation and/or survival. Thebenzoquinone ansamycin geldanamycin has been shown to bind toHsp90and to specifically inhibit this chaperone's function, resultinginclient protein destabilization. Its ability to simultaneouslystimulate depletion of multiple oncogenic proteins suggests thatgeldanamycin, or other molecules capable of targeting Hsp90 incancer cells, may be of clinical benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrarini M, Heltai S, Zocchi MR, Rugarli C: Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51: 613–619, 1992

    Google Scholar 

  2. Hickey E, Brandon SE, Smale G, Lloyd D, Weber LA: Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein. Mol Cell Biol 9: 2615–2626, 1989

    Google Scholar 

  3. Perdew GH, Hord N, Hollenback CE, Welsh MJ: Localization and characterization of the 86-and 84-kDa heat shock proteins in Hepa 1c1c7 cells. Exp Cell Res 209: 350–356, 1993

    Google Scholar 

  4. Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS: The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr 4: 1–18, 1994

    Google Scholar 

  5. Wearsch PA, Nicchitta CV: Purification and partial molecular characterization of GRP94, an ER resident chaperone. Protein Expr Purif 7: 1114–1121, 1996

    Google Scholar 

  6. Chen CF, Chen Y, Dai K, Chen PL, Riley DJ, Lee WH: A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol Cell Biol 16: 4691–4699, 1996

    Google Scholar 

  7. Song HY, Dunbar JD, Zhang YX, Guo D, Donner DB: Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 270: 3574–3581, 1995

    Google Scholar 

  8. Minami Y, Kawasaki H, Miyata Y, Suzuki K, Yahara I: Analysis of native forms and isoform compositions of the 370 mouse 90-kDa heat shock protein, HSP90. J Biol Chem 266: 10099–10103, 1991

    Google Scholar 

  9. Minami Y, Kimura Y, Kawasaki H, Suzuki K, Yahara I: The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol 14: 1459–1464, 1994

    Google Scholar 

  10. Akner G, Mossberg K, Sundqvist KG, Gustafsson JA, Wikstrom AC: Evidence for reversible, non-microlubule and non-microfilament-dependent nuclear translocation of hsp90 after heat shock in human fibroblasts. Eur J Cell Biol 58: 356–364, 1992

    Google Scholar 

  11. Gasc JM, Renoir JM, Faber LE, Delahaye F, Baulieu EE: Nuclear localization of two steroid receptor-associated proteins, hsp90 and p59. Exp Cell Res 186: 362–367, 1990

    Google Scholar 

  12. Neckers L, Mimnaugh E, Schulte T: The Hsp90 chaperone family. In: Latchman D (ed) Stress Proteins. Springer-Verlag, Heidelberg, 1998, pp 9–42

    Google Scholar 

  13. Smith DF, Whitesell L, Katsanis E: Molecular chaperones:Biology and prospects for pharmacological intervention. Pharmacological Reviews 50: 493–513, 1998

    Google Scholar 

  14. Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G: The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79: 129–168, 1998

    Google Scholar 

  15. Toft DO: Recent advances in the study of Hsp90 structure and mechanism of action. TEM 9: 238–243, 1998

    Google Scholar 

  16. Bohen SP, Yamamoto KR: Isolation of Hsp90 mutants by screening for decreased steroid receptor function. Proc Natl Acad Sci USA 90: 11424–11428, 1993

    Google Scholar 

  17. Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR: Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348: 166–168, 1990

    Google Scholar 

  18. Xu Y, Lindquist S: Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci USA 90: 7074–7078, 1993

    Google Scholar 

  19. Whitesell L, Mimnaugh EG, De CB, Myers CE. Neckers LM: Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91: 8324–8328, 1994

    Google Scholar 

  20. Johnson JL, Toft DO: Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol 9: 670–678, 1995

    Google Scholar 

  21. Smith DF, Whitesell L, Nair SC, Chen S, Prapapanich V, Rimerman RA: Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 15: 6804–6812, 1995

    Google Scholar 

  22. Sullivan W, Stensgard B, Caucutt G, Bartha B, McMahon N, Alnemri ES, Litwack G, Toft D: Nucleotides and two functional states of hsp90. J Biol Chem 272: 8007–8012, 1997

    Google Scholar 

  23. An WG, Schnur RC, Neckers L, Blagosklonny MV: Depletion of p185erbB2, Raf-1 and mutant P53 proteins by geldanamycin derivatives correlates well with antiproliferative activity. Cancer Chemother Pharmacol 40: 60–64, 1997

    Google Scholar 

  24. Sepp LL, Ma Z, Lebwohl DE, Vinitsky A, Rosen N: Herbimycin A induces the 20 S proteasome-and ubiquitindependent degradation of receptor tyrosine kinases. J Biol Chem 270: 16580–16587, 1995

    Google Scholar 

  25. Mimnaugh EG, Chavany C, Neckers L: Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271: 22796–227801, 1996

    Google Scholar 

  26. Whitesell L, Suthphin P, An W, Schulte T, Blagosklonny M, Neckers L: Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene 14: 2809–2816, 1997

    Google Scholar 

  27. Schnur R, Corman M, Gallaschun K, Cooper B, Dee M, Doty J, Muzzi M, Moyer J. DiOrio C, Barbacci E et al.: Inhibition of the oncogene product p185erbB-2 in vitroand in vivoby geldanamycin and dihydrogeldanamycin derivatives. J Med Chem 38: 3806–3812, 1995

    Google Scholar 

  28. Paine-Murrieta G, Cook P, Taylor C, Whitesell L: Novel anti-breast cancer activity of benzoquinone ansamycins (Abstract). Proc Am Assoc Cancer Res 39: 175, 1998

    Google Scholar 

  29. Grenert JP, Sullivan WP, Fadden P, Haystead T, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO: The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272: 23843–23850, 1997

    Google Scholar 

  30. Prodromou C, Roe SM, Piper PW, Pearl LH: A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone [see comments]. Nat Struct Biol 4: 477–482, 1997

    Google Scholar 

  31. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP: Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89: 239–250, 1997

    Google Scholar 

  32. Bergerat A, de MB, Gadelle D, Varoutas PC, Nicolas A, Forterre P: An atypical topoisomerase II from Archaea with implications for meiotic recombination [see comments]. Nature 386: 414–417, 1997

    Google Scholar 

  33. Csermely P, Kajtar J, Hollosi M, Jalsovszky G, Holly S, Kahn CR, Gergely PJ, Soti C, Mihaly K, Somogyi J: ATP induces a conformational change of the 90-kDa heat shock protein (hsp90). J Biol Chem 268: 1901–1907, 1993

    Google Scholar 

  34. Nadeau K, Das A, Walsh CT: Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem 268: 1479–1487, 1993

    Google Scholar 

  35. Csermely P, Miyata Y, Schnaider T, Yuhara I: Autophosphorylation of grp94 (endoplasmin). J Biol Chem 270: 6381–6388, 1995

    Google Scholar 

  36. Wearsch PA, Nicchilla CV: Interaction of endoplasmic reticulum chaperone C;KP94 with peptide substrates is adenine nucleotide-independent. J Biol Chem 272: 5152–5156, 1997

    Google Scholar 

  37. Jakob U, Scheibel T, Bose S, Reinstein J, Buchner J: Assessment of the ATP binding properties of Hsp90. J Biol Chem 271: 10035–10041, 1996

    Google Scholar 

  38. Scheibel T, Neuhofen S, Weikl T, Mayr C, Reinstein J, Vogel PD, Buchner J: ATP-binding properties of human Hsp90. J Biol Chem 272: 18608–18613, 1997

    Google Scholar 

  39. Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH: Identification and structural characterization of theATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65–75, 1997

    Google Scholar 

  40. Louvion JF, Warth R, Picard D: Two eukaryote-specific regions of Hsp82 are dispensable for its viability and signal transduction functions in yeast. Proc Natl Acad Sci USA 93: 13937–13942, 1996

    Google Scholar 

  41. Johnson BD, Schumacher RJ, Ross ED, Toft DO: Hop modulates hsp70/hsp90 interactions in protein folding. J Biol Chem 273: 3679–3686, 1998

    Google Scholar 

  42. Panaretou B, Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH: ATP binding and hydrolysis are 371 essential to the function of the Hsp90 molecular chaperone in vivoEMBO J 17: 4829–4836, 1998

    Google Scholar 

  43. Prodromou C, Siligardi CJ, O'Brien R, Woolfson DN, Regan L, Panaretou B, Ladbury JE, Piper PW, Pearl LH: Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPK)-domain co-chaperones. EMBO J 18: 754–762, 1999

    Google Scholar 

  44. Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM: Antibiotic radicicol binds to the Nterminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress and Chaperones 3: 100–108, 1998

    Google Scholar 

  45. Sharma SV, Agatsuma T, Nakano H: Targeting of the protein chaperone Hsp90 by the transformation suppressing agent, radicicol. Oncogene 16: 2639–2645, 1998

    Google Scholar 

  46. Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH: Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42: 260–266, 1999

    Google Scholar 

  47. Blagosklonny MV, Toretsky J, Bohen S, Neckers L: Mutant conformation of p53 translated in vitroor in vivorequires functional HSP90. Proc Natl Acad Sci USA 93: 8379–8383, 1996

    Google Scholar 

  48. Sepehrnia B, Paz IB, Dasgupta G, Momand J: Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J Biol Chem 271: 15084–15090, 1996

    Google Scholar 

  49. Blagosklonny MV, Toretsky J, Neckers L: Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene 11: 933–939, 1995

    Google Scholar 

  50. Jove R, Hanafusa H: Cell transformation by the viral src oncogene. Annu Rev Cell Biol 3: 31–56, 1987

    Google Scholar 

  51. Brugge JS, Erikson E, Erilson RL: The specific interaction of the Rous sarcoma virus transforming protein, pp60v-src, with two cellular proteins. Cell 25: 363–372, 1981

    Google Scholar 

  52. Opperman H, Levinson W, Bishop JM: A cellular protein that associates with the transforming protein of the Rous sarcoma virus is also a heat shock protein. Proc Natl Acad Sci USA 78: 1067–1071, 1981

    Google Scholar 

  53. Dai K, Kobayashi R, Beach D: Physical interaction of mammalian CDC37 with CDK4. J Biol Chem 271: 22030–22034, 1996

    Google Scholar 

  54. Stepanova L, Leng X, Parker SB, Harper JW: Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10: 1491–1502, 1996

    Google Scholar 

  55. Courtneidge S, Bishop JM: Transit oP pp60v-srcto the plasma membrane. Proc Natl Acad Sci USA 79: 7117–7121, 1982

    Google Scholar 

  56. Brugge JS, Yonemoto W, Darrow D: Interaction between the Rous sarcoma virus transforming protein and two cellular phosphoproteins: analysis of the turnover and distribution of this complex. Mol Cell Biol 3: 9–19, 1983

    Google Scholar 

  57. Brugge JS: Interaction of the Rous sarcoma virus protein pp60srcwith cellular proteins pp50 and pp90. Curr Top Microbiol Immunol 123: 1–22, 1986

    Google Scholar 

  58. Jove R, Garber EA, Iba H, Hanafusa H: Biochemical properties of p60v-srcmutants that induce different cell transformation parameters. J Virol 60: 849–857, 1986

    Google Scholar 

  59. Nathan DF, Lindquist S: Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol 15: 3917–3925, 1995

    Google Scholar 

  60. Dey B, Caplan AJ, Boschelli F: The Ydj1 molecular chaperone facilitates formation of active p60v-src in yeast. Mol Biol Cell 7: 91–100, 1996

    Google Scholar 

  61. Kimura Y, Yahara I, Lindquist S: Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways [see comments]. Science 268: 1362–1365, 1995

    Google Scholar 

  62. Chang HC, Nathan DF, Lindquist S: In vivoanalysis of the Hsp90 cochaperone Sti1 (p60). Mol Cell Biol 17: 318–325, 1997

    Google Scholar 

  63. Duina AA, Chang HC, Marsh JA, Lindquist S, Gaber RF: A cyclophilin function in Hsp90-dependent signal transduction. Science 274: 1713–1715, 1996

    Google Scholar 

  64. Dey B, Lightbody JJ, Boschelli F: CDC37 is required for p60v-src activity in yeast. Mol Biol Cell 7: 1405–1417, 1996

    Google Scholar 

  65. Kimura Y, Rutherford SL, Miyata Y, Yahara I, Freeman BC, Yue L, Morimoto RI, Lindquist S: Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev 11: 1775–1785, 1997

    Google Scholar 

  66. Uehara Y, Hori M, Takeuchi T, Umezawa H: Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol Cell Biol 6: 2198–2206, 1986

    Google Scholar 

  67. Uehara Y, Murakami Y, Suzukake TK, Moriya Y, Sano H, Shibata K, Omura S: Effects of herbimycin derivatives on src oncogene function in relation to antitumor activity. J Antibiot (Tokyo) 41: 831–834, 1988

    Google Scholar 

  68. Hutchison KA, Stancato LF, Jove R, Pratt WB: The proteinprotein complex between pp60v-src and hsp90 is stabilized by molybdate, vanadate, tungstate, and an endogenous cytosolic metal. J Biol Chem 267: 13952–13957, 1992

    Google Scholar 

  69. Hartson SD, Matts RL: Association of Hsp90 with cellular Src-family kinases in a cell-free system correlates with altered kinase structure and function. Biochemistry 33: 8912-8920, 1994

    Google Scholar 

  70. Hartson SD, Barrett DJ, Burn P, Matts RL: Hsp90-mediated folding of the lymphoid cell kinase p56lck. Biochemistry 35: 13451–13459, 1996

    Google Scholar 

  71. Lipsich LA, Cutt J, Brugge JS: Association of the transforming proteins of Rous, Fujinami and Y73 avian sarcoma viruses with the same two cellular proteins. Mol Cell Biol 2: 875–880, 1982

    Google Scholar 

  72. Nair SC, Toran EJ, Rimerman RA, Hjermstad S, Smithgall TE, Smith DF: A pahway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1: 237–250, 1996

    Google Scholar 

  73. Aligue R, Akhavan NH, Russell P: A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. Embo J 13: 6099–6106, 1994

    Google Scholar 

  74. Miller P, DiOrio C, Moyer M, Schnur RC, Bruskin A, Cullen W, Moyer JD: Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins. Cancer Res 54: 2724–2730, 1994

    Google Scholar 

  75. Chavany C, Mimnaugh E, Miller P, Bitton R, Nguyen P, Trepel J, Whitesell L, Schnur R, Moyer J, Neckers L: p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J Biol Chem 271: 4974–4977, 1996

    Google Scholar 

  76. Sakagami M, Morrison P, Welch WJ: Benzoquinoid ansamycins (herbimycin A and geldanamycin) interfere with the maturation of growth factor receptor tyrosine kinases. Cell Stress Chap 4: 19–28, 1999

    Google Scholar 

  77. Marshall CJ: Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185, 1995

    Google Scholar 

  78. Morrison DK, Cutler RE: The complexity of Raf-1 regulation. Curr Opin Cell Biol 9: 174–179, 1997

    Google Scholar 

  79. Stancato LF, Chow YH, Hutchison KA, Perdew GH, Jove R, Pratt WB: Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J Biol Chem 268: 21711–21716, 1993

    Google Scholar 

  80. Wartmann M, Davis RJ: The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Biol Chem 269: 6695–6701, 1994

    Google Scholar 

  81. Stancato LF, Hutchison KA, Chakraborti PK, Simons SJ, Pratt WB: Differential effects of the reversible thiol-reactive agents arsenite and methyl methanethiosulfonate on steroid binding by the glucocorticoid receptor. Biochemistry 32: 3729–3736, 1993

    Google Scholar 

  82. Stancato LF, Chow YH, Owens GJ, Yem AW, Deibel MJ, Jove R, Pratt WB: The native v-Raf.hsp90.p50 heterocomplex contains a novel immunophilin of the FK506 binding class. J Biol Chem 269: 22157–22161, 1994

    Google Scholar 

  83. Schulte TW, Blagosklonny MV, Ingui C, Neckers L: Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270: 24585–24588, 1995

    Google Scholar 

  84. Schulte TW, An WG, Neckers LM: Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem Biophys Res Commun 239: 655–659, 1997

    Google Scholar 

  85. Whitesell L, Cook P: Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid receptor function in intact cells. Mol Endocrinol 10: 705–712, 1996

    Google Scholar 

  86. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM: Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol 16: 5839–5845, 1996

    Google Scholar 

  87. Stancato LF, Silverstein AM, Owens GT, Chow YH, Jove R, Pratt WB: The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase. J Biol Chem 272: 4013–4020, 1997

    Google Scholar 

  88. van der Straten A, Rommel C, Dickson B, Hafen E: The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. Embo J 16: 1961–1969, 1997

    Google Scholar 

  89. Miyata Y, Yahara I: The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem 267: 7042–7047, 1992

    Google Scholar 

  90. Shi Y, Brown ED, Walsh CT: Expression of recombinant human casein kinase II and recombinant heat shock protein 90 in Escherichia coli and characterization of their interactions. Proc Natl Acad Sci USA 91: 2767–2771, 1994

    Google Scholar 

  91. Sherr CJ: Cycling on cue. Cell 75: 551–555, 1994

    Google Scholar 

  92. Weinberg RA: The retinoblasloma protein and cell cycle control. Cell 81: 323–330, 1995

    Google Scholar 

  93. Lamphere L, Fiore F, Xu X, Brizuela L, Keezer S, Sardet C, Draetta GF, Gyuris J: Interaction between Cdc37 and Cdk4 in human cells. Oncogene 14: 1999–2004, 1997

    Google Scholar 

  94. Akagi T, Ono H, Shimotohno K: Tyrosine kinase inhibitor herbimycin A reduces the stability of cyclin-dependent kinase Cdk6 protein in T-cells. Oncogene 13: 399–405, 1996

    Google Scholar 

  95. Taussig R, Gilman AG: Mammalian membrane-bound adenylyl cyclases. J Biol Chem 270: 1–4, 1995

    Google Scholar 

  96. Inanobe A, Takahashi K, Katada T: Association of the beta gamma subunits of trimeric GTP-binding proteins with 90-kDa heat shock protein, hsp90. J Biochem (Tokyo) 115: 486–492, 1994

    Google Scholar 

  97. Schmidt CJ, Neer EJ: In vitrosynthesis of G protein βγdimers. J Biol Chem 266: 4538–4544, 1991

    Google Scholar 

  98. Higgins JB, Casey PJ: In vitroprocessing of recombinant G protein γ subunits. Requiriments for assembly of an active βγcomplex. J Biol Chem 269: 9067–9073, 1994

    Google Scholar 

  99. Mende U, Schmidt CJ, Yi F, Spring DJ, Neer EJ: The G protein γ subunit. Requirements for dimerization with ßsubunits. J Biol Chem 270: 15892–15898, 1995

    Google Scholar 

  100. Weiner T, Liu E, Craven R, Cance W: Expression of focal adhesion kinase gene and invasive cancer. Lancet 342: 1024–1025, 1993

    Google Scholar 

  101. Owens L, Xu L, Craven R, Dent G, Weiner T, Kornberg L, Liu E, Cance W: Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55: 2752–2755, 1995

    Google Scholar 

  102. Ochel H-J, Schulte T, Nguyen P, Trepel J, Neckers L: The benzoquinone ansamycin geldanamycin stimulates proteolytic degradation of focal adhesion kinase. Mol Gen Met 66: 24–30, 1999

    Google Scholar 

  103. Supko JG, Hickman RL, Grever MR, Malspeis L: Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36: 305–315, 1995

    Google Scholar 

  104. Jameel A, Law M, Coombes RC, Luqmani YA: Significance of heat shock protein 90 as prognostic indicator in breast cancer. Int J Oncol 2: 1075–1080, 1993

    Google Scholar 

  105. Yano M, Naito Z, Tanaka S, Asano G: Expression and roles of heat shock proteins in human breast cancer. Jpn J Cancer Res 87: 908–915, 1996

    Google Scholar 

  106. Yufu Y, Nishimura J, Nawata H: High constitutive expression of heat shock protein 90 βγin human acute leukemia cells. Leuk Res 16: 597-605, 1992

    Google Scholar 

  107. Lebeau J, Chalony C, Prosperi MT, Goubin G: Constitutive overexpression of 89 kDa heat shock protein gene in the HBL100 human mammary cell line converted to a tumorigenic phenotype by the EJ/T24 Harvey-rasoncogene. Oncogene 6: 1125–1132, 1991

    Google Scholar 

  108. Ferrarini M, Heltai S, Zocchi MR, Rugarli C: Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51: 613–619, 1992

    Google Scholar 

  109. Gabai VL, Mosina VA, Budagova KR, Kabakov AE: Spontaneous overexpression of heat shock protein in Ehrlichascites carcinoma cells during in vivogrowth. Biochem Mol Int 35: 95–102, 1995

    Google Scholar 

  110. Jameel A, Skilton RA, Campbell TA, Chander SK, Coombes RC, Luqmani YA: Clinical and biological significance of HSP89a in human breast cancer. Int J Cancer 50: 409–415, 1992

    Google Scholar 

  111. Redeuilh G, Moncharmon B, Secco C, Baulieu EE: Subunit composition of the molybdate-stabilized "8-9S" nontransformed estradiol receptor purified from calf uterus. J Biol Chem 262: 6969–6975, 1987

    Google Scholar 

  112. Veldscholte J, Berrevoets CA, Brinkmann AO, Grootegoed JA, Mulder E: Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 31: 2393–2399, 1992

    Google Scholar 

  113. Aumais J, Lee H, R L, JH W: Selective interaction of Hsp90 with an estrogen receptor ligand-binding domain containing a point mutation. J Biol Chem 272: 12229–12235, 1997

    Google Scholar 

  114. Nguyen D, Chen A, Mixon A, Schrump D: Sequencedependent enhancement of taxol sensitivity in non-small cell lung cancer by erbB-2 tyrosine kinase inhibitor NSC330507 (Abstract). Proc Am Assoc Canc Res 40: 485, 1999

    Google Scholar 

  115. Schulte T, Neckers L: The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to Hsp90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42: 273–279, 1998

    Google Scholar 

  116. Nair SC, Rimerman RA, Toran EJ, Chen S, Prapapanich V, Butts RN, Smith DF: Molecular cloning of human FKBP51 and comparisons of immunophilin interactions with Hsp90 and progesterone receptor. Mol Cell Biol 17: 594–603, 1997

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neckers, L., Schulte, T.W. & Mimnaugh, E. Geldanamycin as a Potential Anti-Cancer Agent: Its Molecular Target and Biochemical Activity. Invest New Drugs 17, 361–373 (1999). https://doi.org/10.1023/A:1006382320697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006382320697

Navigation