Skip to main content
Log in

The role of transforming growth factor Β in glioma progression

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

This review examines the apparently paradoxical conversion of transforming growth factor β's (TGFβ) regulatory role as a growth inhibitor among normal glial cells to that of a progression factor among glioblastomas (GM). In vitro, TGFβ functions as an autocrine growth inhibitor of near-diploid gliomas of any grade. In contrast, hyperdiploid glioblastoma multiforme (HD-GM) cultures proliferate in response to TGFβ, which is mediated by induction of platelet-derived growth factor B chain (PDGF-BB). The dominant hypothesis of TGFβ's pathogenetic association with malignant transformation has been predicated upon acquisition of resistance to its growth inhibitory effects. However, the lack of obvious correlation with TGFβ receptor (TβR) expression (or loss) between the HD-GM and the TGFβ-inhibited GM cultures suggests the existence of intrinsically opposed regulatory mechanisms influenced by TGFβ. The mechanism of conversion might be explained either by the loss of a putative tumor suppressor gene (TSG) which mediates TGFβ's inhibition of growth or by enhancement of an active oncogenic pathway among the HD-GM. The frequency of mutations within glioma-associated TSG, such as TP53 and RB, suggests that defects in TGFβ's inhibitory signaling pathway may have analogous effects in the progression to HD-GM, and TGFβ's conversion to a mitogen. Alternative sites of inactivation which might explain the loss of TGFβ's inhibitory effect include inactivating mutation/loss of the TβR type II, alterations in post-receptor signal transmission or the cyclin/cyclin dependent kinase system which regulates the phosphorylation of pRB. Loss or inactivation of a glial TSG with a consequent failure of inhibition appears to allow TGFβ's other constitutive effects, such as induction of c-sis, to become functionally dominant. Mechanistically, TGFβ's conversion from autocrine inhibitor to mitogen promotes 'clonal dominance' by conferring a Darwinian advantage to the hyperdiploid subpopulations through qualitative and quantitative differences in its modulation of PDGF-A and c-sis, with concomitant paracrine inhibition of competing, near-diploid elements. Abbreviations: transforming growth factor β (TGFβ) and receptor (TβR); retinoblastoma gene (RB) and protein (pRB); platelet-derived growth factor (PDGF) and receptor (PDGFR); epidermal growth factor (EGF) and receptor (EGFR); fibroblast growth factor (FGF); malignant glioma (MG), astrocytoma (AST), anaplastic astrocytoma (AAST), glioblastoma (GM); hyperdiploid glioblastoma (HD-GM); glioblastoma multiforme (GM); normal rat kidney (NRK); tumor suppressor gene (TSG); loss of heterozygosity (LOH); TP53 wild type (TP53wt); TP53 mutant (TP53m)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moses HL, Branum JA, Proper JA, Robinson RA: Transforming growth factor production by chemically transformed cells. Cancer Res 41: 2842–2848, 1981

    Google Scholar 

  2. Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB: New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 78: 5339–5343, 1981

    Google Scholar 

  3. Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB: Transforming growth factor-β?in human platelets: identification of a major storage site, purification and characterization. J Biol Chem 258: 7155–7160, 1983

    Google Scholar 

  4. Tucker RF, Shipley GD, Moses HL: Growth inhibitor from BSC-1 cells closely related to platelet type beta transforming growth factor. Science 226: 705–707, 1984

    Google Scholar 

  5. Sherr CJ: Mammalian G1 Cyclins. Cell 73: 1059–1065, 1993

    Google Scholar 

  6. Shipley GD, Tucker RF, Moses HL: Type β-transforming growth factor/growth inhibitor stimulates entry of monolayer cultures of AKR-2B cells into S-phase after a prolonged prereplicative interval. Proc Natl Acad Sci USA 82: 4147–4151, 1985

    Google Scholar 

  7. Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM, Pittelkow MR, Munger K, Howley PM, Moses HL: TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61: 777–785, 1990

    Google Scholar 

  8. Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massague J: Growth inhibition by TGF-03B27?linked to suppression of retinoblastoma protein phosphorylation. Cell 62: 175–185, 1990

    Google Scholar 

  9. Moses HL, Yang EY, Pietenpol JA: TGF-βstimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63: 245–247, 1990

    Google Scholar 

  10. Landesman Y, Pagano M, Draetta G, Rotter V, Fusenig NE, Kimchi A: Modifications of cell cycle controlling nuclear proteins by transforming growth factor β?in the HaCaT keratinocyte cell line. Oncogene 7: 1661–1665, 1992

    Google Scholar 

  11. Alexandrow MG, Moses HL: Transforming growth factor βand cell cycle regulation. Cancer Res 55: 1452–1457, 1995

    Google Scholar 

  12. Johnson MD, Jennings MT, Gold LI, Moses HL: Transforming growth factor-β?in neural embryogenesis and neoplasia. Hum Pathol 24: 457–462, 1993

    Google Scholar 

  13. Filmus J, Kerbel RS: Development of resistance mechanisms to the growth-inhibitory effects of transforming growth factor-??during tumor progression. Curr Opin Oncol 5: 123–129, 1993

    Google Scholar 

  14. Border WA, Noble NA: Targeting TGF-βfor treatment of disease. Nature Medic 1: 1000–1001, 1995

    Google Scholar 

  15. Lindholm D, Castrem E, Keifer R, Zafra F, Thoenen H: Transforming growth factor-beta 1in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 117: 395–400, 1992

    Google Scholar 

  16. da Cunha A, Jefferson JJ, Tyor WR, Glass JD, Jannotta FS, Vitkovic L: Control of astrocytosis by interleukin-1 and transforming growth factor-β1 in human brain. Brain Res 631: 39–45, 1993

    Google Scholar 

  17. Toru-Delbauffe D, Baghdassarian-Chalaye D, Gavaret JM, Courtin F, Pomerance M, Pierre M: Effects of transforming growth factor beta 1 on astroglial cells in culture. J Neurochem 54: 1056–1061, 1990

    Google Scholar 

  18. Ryken TC, Traynelis VC, Lim R: Interaction of acidic fibroblast growth factor and transforming growth factor-??in normal and transformed glia in vitro. J Neurosurg 76: 850–855, 1992

    Google Scholar 

  19. Hunter KE, Sporn MG, Davies AM: Transforming growth factor-betas inhibit mitogen-stimulated proliferation of astrocytes. Glia 7: 203–233, 1993

    Google Scholar 

  20. Vergelli V, Mazzanti B, Ballerini C, Gran B, Amaducci L, Massacesi L: Transforming growth factor-?1 inhibits the proliferation of rat astrocytes induced by serum and growth factors. J Neurosci Res 40: 127–133, 1995

    Google Scholar 

  21. Samuels V, Barrett JM, Bockman S, Pantazis CG, Allen MB: Jr., Immunocytochemical study of transforming growth factor expression in benign and malignant gliomas. Am J Pathol 134: 895–902, 1989

    Google Scholar 

  22. Horst H-A, Kelly PJ, Scheithauer BW, Kovach JS: Immunohistological localization of transforming growth factor-??in human astrocytomas. Hum Pathol 23: 1284–1288, 1992

    Google Scholar 

  23. Gold LI, Saxena B, Zagzag D, Miller DC, Koslow M, Brandeis L, Farmer J-P: Increased expression of TGF-βisoforms by malignant gliomas. J Cell Biochem 16B: 123, 1992

    Google Scholar 

  24. Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Helden C-H, Funa K: Enhanced expression of transforming growth factor-β?and its type-I and type-II receptors in human glioblastoma. Int J Cancer 62: 386–392, 1995

    Google Scholar 

  25. Franzen P, ten Dijke P, Ichijo H, Yamashiata H, Schultz P, Helden C-H, Miyazono K: Cloning of a TGF??type-I receptor that forms a heteromeric complex with the TGFβ?type-II receptor. Cell 75: 681–692, 1993

    Google Scholar 

  26. Majewski C, Blisard K, Ballard E, Blair P, Qadir K, Bokhari S, Raza A, Lampkin B: Prognostic significance of immunohistochemical detection of transforming growth factor beta (TGF-β) in central nervous system (CNS) neoplasia. (Abstract) Growth Control in Central Nervous System International workshop. Boston Massachusetts April 30–May 1, 1993

  27. Hsu S, Huang F, Hafez M, Winawer S, Friedman E: Colon carcinoma cells switch their response to transforming growth factor β1 with tumor progression. Cell Growth & Different 5: 267–275, 1994

    Google Scholar 

  28. Friedman E, Gold LI, Klimstra D, Zeng Z-S, Winawer S, Cohen A: High levels of transforming growth factor β1correlate with disease progression in human colon cancer. Cancer Epidem Biomark & Prevent 4: 549–554, 1995

    Google Scholar 

  29. Welch D, Fabra A, Nakajima M: Transforming growth factor β?stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA 87: 7678–7682, 1990

    Google Scholar 

  30. Arrick BA, Lopez AR, Elfman F, Ebner R, Damsky CH, Derynck R: Altered metabolic and adhesive properties and increased tumorigenesis associated with increased expression of transforming growth factor β1. J Cell Biol 118: 715–726, 1992

    Google Scholar 

  31. Schwarz LC, Gingras M-C, Goldberg G, Greenberg AH, Wright JA: Loss of growth factor dependence and conversion of transforming growth factor-β1inhibition to stimulation in metastatic H-ras-transformed murine fibroblasts. Cancer Res 48: 6999–7003, 1988

    Google Scholar 

  32. Mooradian DL, Purchio AF, Furcht LT: Differential effects of transforming growth factor β1 on the growth of poorly and highly metastatic murine melanoma cells. Cancer Res 50: 273–277, 1990

    Google Scholar 

  33. Leone A, Flatow J, King CR, Sandeen MA, Margulies IMK, Liotta LA, Steeg PS: Reduced tumor incidence, metastatic potential and cytokine responsiveness in nm23-transfected melanoma cells. Cell 65: 25–35, 1991

    Google Scholar 

  34. Bar-Sagi D, Feramisco JR: Microinjection of the ras oncogene product into PC12 cells induces morphological differentiation. Cell 42: 841–848, 1985

    Google Scholar 

  35. Nakagawa T, Mabry M, De Bustros A, Ihle JN, Nelkin BD, Baylin SB: Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary thyroid carcinoma cells. Proc Natl Acad Sci USA 84: 5923–5927, 1987

    Google Scholar 

  36. Fan Z, Lu Y, Wu X, DeBlasio A, Koff A, Mendelsohn J: Prolonged induction of p21CIP1/WAF1/CDK2/PCNA complex by epidermal growth factor receptor activation mediates ligand-induced A431 cell growth inhibition. J Cell Biol 131: 235–242, 1995

    Google Scholar 

  37. Vossbeck H, Strahm B, Höfler P, Bauer G: Direct transforming activity of TGF??on rat fibroblasts. Int J Cancer 61: 92–97, 1995

    Google Scholar 

  38. Höfler P, Wehrle J, Bauer G: TGF??induces an inhibitory effect on normal cells directed against transformed cells. Int J Cancer 54: 125–130, 1993

    Google Scholar 

  39. Jürgensmeier JM, Schmitte CP, Viesel E, Höfler P, Bauer G: Transforming growth factor ?-treated normal fibroblasts eliminate transformed fibroblasts in induction of apoptosis. Cancer Res 54: 393–398, 1994

    Google Scholar 

  40. Bauer G: Resistance to TGF-β-induced elimination of transformed cells is required during tumor progression (Review-hypothesis). Int J Oncology 6: 1227–1229, 1995

    Google Scholar 

  41. Bauer G, Höfler P: Epstein-Barr-virus-inducing factor: a growth factor with tumor-promoting ability. J Cancer Res Clin Oncol 109: A48, 1985

    Google Scholar 

  42. Hamel E, Katoh F, Mueller G, Birchmeier, Yamasaki H: Transforming growth factor β?as a potent promoter in two-stage BALB/c 3T3 cell transformation. Cancer Res 48: 2832–2836, 1988

    Google Scholar 

  43. Fürstenberger G, Rogers M, Schnapke R, Bauer G, Höfler P, Marks F: Stimulatory role of transforming growth factors in multistage skin carcinogenesis: possible explanation for the tumor-inducing effect of wounding in initiated NMRI mouse skin. Int J Cancer 43: 915–921, 1989

    Google Scholar 

  44. Bauer G, Götschl M, Höfler P: Tumor-promoting activity of Epstein-Barr-virus-inducing factor transforming growth factor type beta (EIF/TGF-β) is due to the induction of irreversible transformation. Int J Cancer 47: 881–888, 1991

    Google Scholar 

  45. Suzuki M, Asplund T, Yamashita H, Heldin C-H, Heldin P: Stimulation of hyaluronan biosynthesis by platelet-derived growth factor-BB and transforming growth factor-?1 involves activation of protein kinase C. Biochem J 307: 817–821, 1995

    Google Scholar 

  46. Nishikawa K, Yamamoto S, Nagumo H, Otsuka C, Kato R: Suppressive effect of transforming growth factor ??on the phosphorylation of endogenous substrates by conventional and novel protein kinase C in primary cultured mouse epidermal cells. Biochem Biophys Res Commun 193: 384–389, 1993

    Google Scholar 

  47. Chang H-L, Gillet N, Figari I, Lopez AR, Palladino MA, Derynck R: Increased transforming growth factor β?expression inhibits cell proliferation in vitro, yet increases tumorigenicity and tumor growth of Meth A sarcoma cells. Cancer Res 53: 4391–4398, 1993

    Google Scholar 

  48. Theodorescu D, Caltabiano M, Greig R, Rieman D, Kerbel RS: Reduction of TGF-beta activity abrogates growth promoting tumor cell-cell interactions in vivo. J Cell Physiol 148: 380–390, 1991

    Google Scholar 

  49. Plate KH, Breier G, Farrell CL, Risau W: Platelet-derived growth factor receptor-β?is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab Invest 67: 529–534, 1992

    Google Scholar 

  50. Arteaga CL, Carty-Dugger T, Moses HL, Hurd SD, Pietenpol JA: Transforming growth factor β1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth & Different 4: 193–201, 1993

    Google Scholar 

  51. Merzak A, McCrea S, Koocheckpoor S, Pilkington GJ: Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor β1. Br J Cancer 70: 199–203, 1994

    Google Scholar 

  52. Paulus W, Baur I, Huettner C, Schaußer B, Roggendorf W, Schliegensiepen KH, Brysch W: Effect of transforming growth factor-β1on collagen synthesis, integrin expression, adhesion and invasion of glioma cells. J Neuropathol Exp Neurol 54: 236–244, 1995

    Google Scholar 

  53. Leof EB, Proper JA, Goustin AS, Shipley GD, Dicorletto PE, Moses HL: Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor β: a proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci USA 83: 2453–2457, 1986

    Google Scholar 

  54. Pertovaara L, Sistonen L, Bos TJ, Vogt PK, Keski-Oja J, Alitalo K: Enhanced jun gene expression is a early genomic response to transforming growth factor ??stimulation. Mol Cell Biol 9: 12255–12262, 1989

    Google Scholar 

  55. Beauchamp RD, Sheng H-M, Bascom CC, Miller DA, Lyons RM, Torre-Amione G, Moses HL: Phenotypic alterations in fibroblasts and fibrosarcoma cells that overexpress latent transforming growth factor-?1. Endocrinology 130: 2476–2486, 1992

    Google Scholar 

  56. Soma Y, Grotendorst GR: TGF-beta stimulates primary human skin fibroblast DNA synthesis via an autocrine production of PDGF-related peptides. J Cell Physiol 140: 246–253, 1989

    Google Scholar 

  57. Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF, Ross R: TGF-βinduces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63: 515–524, 1990

    Google Scholar 

  58. Gronwald RGK, Seifert RA, Bowen-Pope DF: Differential regulation of expression of two platelet-derived growth factor receptor subunits by transforming growth factor-β. J Biol Chem 264: 8120–8125, 1989

    Google Scholar 

  59. Ishikawa O, LeRoy EC, Trojanowska M: Mitogenic effect of transforming growth factor β1 on human fibroblasts involves the induction of platelet-derived growth factor βreceptors. J Cell Physiol 145: 181–186, 1990

    Google Scholar 

  60. Janat MF, Liau G: Transforming growth factor β1 is a powerful modulator of platelet-derived growth factor action in vascular smooth muscle cells. J Cell Physiol 150: 232–242, 1992

    Google Scholar 

  61. Agrotis A, Saltis J, Bobik A: Effect of transforming growth factor β-1 on platelet-derived growth factor receptor binding and gene expression in vascular smooth muscle cells from SHR and WKY rats. Clin Exp Pharmacol Physiol 21: 145–148, 1994

    Google Scholar 

  62. Pinzani M, Gentilini A, Caligiuri A, De Franco R, Pellegrini G, Milani S, Marra F, Gentilini P: Transforming growth factor β-1regulates platelet-derived growth factor receptor ??subunit in human liver fat-storing cells. Hepatology 21: 232–239, 1995

    Google Scholar 

  63. Helseth E, Unsgaard G, Dalen A, Vik R: The effects of type beta transforming growth factor on proliferation and epidermal growth factor receptor expression in a human glioblastoma line. J Neuro-Oncol 6: 269–276, 1988

    Google Scholar 

  64. Plouet J, Gospodarowicz D: Transforming growth factor β-1 positively modulates the bioactivity of fibroblast growth factor on corneal endothelial cells. J Cell Physiol 141: 392–399, 1989

    Google Scholar 

  65. Howe PH, Leof EB: Transforming growth factor β1 treatment of AKR-2B cells is coupled through a pertussis-toxin-sensitive G-protein(s). Biochem J 261: 879–886, 1989

    Google Scholar 

  66. Robertson PL, Markovac J, Datta SC, Goldstein GW: Transforming growth factor beta stimulates phosphoinositol metabolism and translocation of protein kinase C in cultured astrocytes. Neurosci Lett 93: 107–113, 1988

    Google Scholar 

  67. Daniel TO, Gibbs VC, Milfay DF, Williams LT: Agents that increase cAMP accumulation block endothelial c-sis induction by thrombin and transforming growth factor-β. J Biol Chem 262: 11893–11896, 1987

    Google Scholar 

  68. Ethier S: Growth factor synthesis and human breast cancer progression. J Natl Cancer Inst 87: 964–973, 1995

    Google Scholar 

  69. Yamakage A, Kikuchi K, Smith EA, LeRoy EC, Trojanowska M: Selective upregulation of platelet-derived growth factor ?αreceptor subunits by transforming growth factor β?in scleroderma fibroblasts. J Exp Med 175: 1227–1234, 1992

    Google Scholar 

  70. Press RD, Misra A, Gillaspy G, Samols D, Goldthwait DA: Control of the expression of c-sis mRNA in human glioblastoma cells by phorbol ester and transforming growth factor β. Cancer Res 49: 2914–2920, 1989

    Google Scholar 

  71. Jennings MT, Maciunas RJ, Carver RS, Bascom CC, Juneau P, Misulis K, Moses HL: TGFβ1 and TGFβ2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis. Int J Cancer 49: 129–139, 1991

    Google Scholar 

  72. Mapstone TB: Expression of platelet-derived growth factor and transforming growth factor and their correlation with cellular morphology in glial tumors. J Neurosurg 75: 447–451, 1991

    Google Scholar 

  73. Jennings MT, Kaariainen IT, Gold LI, Maciunas RJ, Commers PA: TGFβ1 and TGFβ2 are potential growth regulators for medulloblastomas, primitive neuroectodermal tumors and ependymomas: evidence in support of an autocrine hypothesis. Hum Pathol 25: 464–475, 1994

    Google Scholar 

  74. Lyons RM, Gentry LE, Purchio AF, Moses HL: Mechanism of activation of latent recombinant transforming growth factor β1by plasmin. J Cell Biol 110: 1361–1367, 1990

    Google Scholar 

  75. Zhou G-HK, Sechrist GL, Periyasamy S, Brattain MG, Mulder KM: Transforming growth factor ??isoform-specific differences in interactions with type I and II transforming growth factor β?receptors. Cancer Res 55: 2056–2062, 1995

    Google Scholar 

  76. Shipley GD, Childs CB, Volkenant HE, Moses HL: Differential effects of epidermal growth factor, transforming growth factor and insulin on DNA and protein synthesis and morphology in serum-free cultures of AKR-2B cells. Cancer Res 44: 701–716, 1984

    Google Scholar 

  77. Markowitz S, Wang J, Myeroff L, Parson R, Sun L, Lutterbaugh, Fan RS, Zborowska A, Kinzler KW, Vogelstein B, Brattain M, Willson JKV: Inactivation of the type II TGF-?βreceptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338, 1995

    Google Scholar 

  78. Hebert CD, Birnbaum LAA: Lack of correlation between sensitivity to growth inhibition and receptor number for transforming growth factor β?in human squamous carcinoma cell lines. Cancer Res 49: 3196–3202, 1989

    Google Scholar 

  79. Kimchi A, Wang ZF, Weinberg RA, Cheifetz S, Massague J: Absence of TGF-β?receptors and growth inhibitory responses in retinoblastoma cells. Science 240: 196–198, 1988

    Google Scholar 

  80. Ong G, Sikora K, Gullick WJ: Inactivation of the retinoblastoma gene does not lead to loss of TGF-βreceptors or response to TGF-β?in breast cancer cell lines. Oncogene 6: 761–763, 1991

    Google Scholar 

  81. Miyazono K, ten Dijke P, Ichijo H, Heldin C-H: Receptors for transforming growth factor-β. Adv Immunol 55: 181–220, 1994

    Google Scholar 

  82. Laiho M, Weis FMB, Boyd FT, Ignotz RA, Massague J: Responsiveness to transforming growth factor-β?(TGF-β) restored by genetic complementation between cells defective in TGF-βreceptors I and II. J Biol Chem 266: 9108–9112, 1991

    Google Scholar 

  83. Wrana JL, Attisano L, Càrcamo J, Zentella A, Doody J, Laiho M, Wang X-F, Massagaue J: TGF-??signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014, 1992

    Google Scholar 

  84. Chen R-H, Ebner R, Derynck R: Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-βactivities. Science 260: 1335–1338, 1993

    Google Scholar 

  85. Càrcamo J, Weiss FMB, Ventura F, Wieser R, Wrana JL, Attisano L, Massague J: Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor β?and activin. Mol Cell Biol 14: 3810–3821, 1994

    Google Scholar 

  86. Geng Y, Weinberg RA: Transforming growth factor βeffects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc Natl Acad Sci USA 90: 10315–10319, 1993

    Google Scholar 

  87. Ko TC, Shen HM, Reisman D, Thompson EA, Beauchamp RD: Transforming growth factor-β1 inhibits cyclin D1 expression in intestinal epithelial cells. Oncogene 10: 177–184, 1995

    Google Scholar 

  88. Koff A, Ohtuki M, Polyak K, Roberts JM, Massague J: Negative regulation of G1 in mammalian cells: inhibition of cycle E-dependent kinase by TGFβ. Science 260: 536–539, 1993

    Google Scholar 

  89. Slingerland JM, Hengst L, Pan C-H, Alexander D, Stampfer MR, Reed SI: A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor β-arrested epithelial cells. Mol Cell Biol 14: 3683–3694, 1994

    Google Scholar 

  90. Xiong Y, Connolly T, Futcher B, Beach D: Human D-type cyclin. Cell 65: 691–699, 1991

    Google Scholar 

  91. Barkova J, Lukas J, Strauss M, Bartek J: Cyclin D1 oncoprotein aberrantly accumulates in malignancies of diverse histogenesis. Oncogene 10: 775–778, 1995

    Google Scholar 

  92. Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J-Y, Livingston DM: Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73: 487–497, 1993a

    Google Scholar 

  93. Okamoto A, Jiang W, Kim S-J, Spillare EA, Stoner GD, Weinstein IB, Harris CC: Overexpression of human cyclin D1 reduces the transforming growth factor β?(TGF-β) type II receptor and growth inhibition by TGF-β1 in an immortalized human esophageal epithelial cell line. Proc Natl Acad Sci USA 91: 11576–11580, 1994

    Google Scholar 

  94. Ewen ME, Sluss HK, Whitehouse LL, Livingston DM: TGFβinhibition of Cdk4 synthesis linked to cell cycle arrest. Cell 74: 1009–1020, 1993b

    Google Scholar 

  95. Ando K, Griffin JD: Cdk4 integrates growth stimulatory and inhibitory signals during G1 phase of hematopoietic cells. Oncogene 10: 751–755, 1995

    Google Scholar 

  96. Furukawa Y, Uenoyama S, Ohta M, Tsunoda A, Griffin JD, Saito M: Transforming growth factor-??inhibits phosphorylation of the retinoblastoma susceptibility gene product in human monocytic leukemia cell line JOSK-1. J Biol Chem 267: 17121–17127, 1992

    Google Scholar 

  97. Howe PH, Draetta G, Leof EB: Transforming growth factor β1 inhibition of p34cdc2 phosphorylation and histone H1 kinase activity is associated with G1/S growth arrest. Mol Cell Biol 11: 1185–1194, 1991

    Google Scholar 

  98. Longstreet M, Miller B, Howe PH: Loss of transforming growth factor B1 (TGF-β1)-induced growth arrest and p34cdc2 regulation in ras-transfected epithelial cells. Oncogene 7: 1549–1556, 1992

    Google Scholar 

  99. Guan K-L, Jenkins CW, Li Y, Nichols MA, Wu C, O'Keefe CL, Materal AG, Ziong Y: Growth suppression by p18, a p16INK4/MTS1 and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8: 2939–2952, 1994

    Google Scholar 

  100. Kawamata N, Morosetti R, Miller CW, Park D, Spirin KS, Nakamaki T, Takeuchi S, Hatta Y, Simpson J, Wilczynski S, Lee YY, Bartram CS, Koeffler HP: Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in human malignancies. Cancer Res 55: 2266–2269, 1995

    Google Scholar 

  101. Shiohara M, El-Diery WS, Wada M, Nakamaki T, Takeuchi S, Yang R, Chen D-L, Vogelstein B, Koeffler HP: Absence of WAF1 mutations in a variety of human malignancies. Blood 84: 3781–3784, 1994

    Google Scholar 

  102. Li C-Y, Suardet L, Little JB: Potential role of WAF1/Cip1/ p21 as a mediator of TGF-βcytoinhibitory effect. J Biol Chem 270: 4971–4974, 1995

    Google Scholar 

  103. Mulder KM, Morris SL: Activation of p21ras by transforming growth factor β?in epithelial cells. J Biol Chem 267: 5029–5031, 1991

    Google Scholar 

  104. Dulic V, Kaufmann WK, Wilson SJ, Tisty TD, Lees E, Harper JW, Elledge SJ, Reed SI: p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023, 1994

    Google Scholar 

  105. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A: p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contract inhibition to cell cycle arrest. Genes Dev 8: 9–22, 1994a

    Google Scholar 

  106. Polyak K, Lee M-H, Erdjument-Bromage K, Koff A, Roberts JM, Tempst P, Massague J: Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 58–66, 1994b

    Google Scholar 

  107. Toyoshima H, Hunter T: P27, a novel inhibitory of B1 cyclin-cdk protein kinase activity, is related to p21. Cell 78: 67–74, 1994

    Google Scholar 

  108. Ravitz MJ, Yan S, Herr KD, Wenner CE: Transforming growth factor β-induced activation of cyclin E-cdk2 kinase and down-regulation of p27Kip1 in C3H 10T1/2 mouse fibroblasts. Cancer Res 55: 1413–1416, 1995

    Google Scholar 

  109. Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, Willson JKV, Kinsler KW, Vogelstein B: Deletion of p16 and p15 genes in brain tumors. Cancer Res 54: 6353–6358, 1994

    Google Scholar 

  110. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS III, Johnson BE, Skolnick MH: A cell cycle potentially involved in the genesis of many tumor types. Science 264: 436–440, 1994

    Google Scholar 

  111. Herman JG, Jen J, Merlo A, Baylin SB: Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B1. Cancer Res 56: 722–727, 1996

    Google Scholar 

  112. Hannon GJ, Beach D: p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371: 257–261, 1994

    Google Scholar 

  113. Serrano M, Gomez-Lahoz E, dePinho RA, Beach D, BarSagi D: Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science 267: 249–252, 1995

    Google Scholar 

  114. Weinberg RA: The retinoblastoma protein and cell cycle control. Cell 81: 323–330, 1995

    Google Scholar 

  115. Serrano M, Hannon GJ, Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cycle D/ CDK4. Nature 366: 704–707, 1993

    Google Scholar 

  116. Xiong Y, Zhang H, Beach D: Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 7: 1572–1583, 1993b

    Google Scholar 

  117. Schmidt EE, Ichimura K, Reifenberger G, Collins VP: CDKN2(p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastoma. Cancer Res 54: 6321–6324, 1994

    Google Scholar 

  118. Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, Bartek J: Retinoblastoma-protein-dependent cell-cycle inhibition by the tumor suppressor p16. Nature 375: 503–506, 1995

    Google Scholar 

  119. Otterson GA, Kratzke RA, Coxon A, Kim YW, Kaye FJ: Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 9: 3375–3378, 1994

    Google Scholar 

  120. Goyette MC, Cho K, Fasching CL, Levy DB, Kinzler KW, Pareskeva C, Vogelstein B, Stanbridge EJ: Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect by chromosome transfer. Mol Cell Biol 12: 1387–1395, 1992

    Google Scholar 

  121. Makela TP, Alitalo P, Paulsson Y, Westermark B, Heldin C-H, Alitalo K: Regulation of platelet-derived growth factor gene expression by transforming growth factor ?βand phorbol-ester in human leukemia cell lines. Mol Cell Biol 7: 3656–3662, 1987

    Google Scholar 

  122. Bronzert DA, Bates SE, Sheridan JP, Lindsey R, Valverius EM, Stmpfer JR, Lippman ME, Dickson RB: Transforming growth factor-β?induces platelet-derived growth factor (PDGF) messenger RNA and PDGF secretion while inhibiting growth in normal mammary epithelial cells. Mol Endocrinol 4: 981–989, 1990

    Google Scholar 

  123. Vavruch L, Enestrom S, Carstensen J, Nordenskjold B, Wingren S: DNA index and S-phase in primary brain tumors. J Neurosurg 80: 85–89, 1994

    Google Scholar 

  124. Renan MJ: How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7: 139–146, 1993

    Google Scholar 

  125. Bigner SH, Mark J, Bullard DE, Mahaley MS Jr, Bigner DD: Chromosomal evolution in malignant human gliomas starts with specific and usually numerical deviations. Cancer Genet Cytogenet 22: 121–135, 1986

    Google Scholar 

  126. Lang FF, Miller DC, Koslow M, Newcomb EW: Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 81: 427–436, 1994

    Google Scholar 

  127. Rasheed BKA, McLendon RE, Herndon JE, Friedman JS, Friedman AH, Bigner DD, Bigner SH: Alterations of the TP53 gene in human gliomas. Cancer Res 54: 1324–1330, 1994

    Google Scholar 

  128. Westermark B, Nister M: Molecular genetics of human glioma. Curr Opin Oncol 7: 220–225, 1995

    Google Scholar 

  129. Orian JM, Vasilopoulos K, Yoshida S, Kaye AH, Chow CW, Gonzales MF: Overexpression of multiple oncogenes related to histological grade of astrocytic glioma. Br J Cancer 66: 106–112, 1992

    Google Scholar 

  130. Frankel RH, Bayona W, Koslow M, Newcomb EW: p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res 52: 1427–1433, 1992

    Google Scholar 

  131. Newcombe EW, Madonia WJ, Pisharody S, Lang FF, Koslow M, Miller DC: A correlative study of p53 protein alteration and p53 gene mutation in glioblastoma multiforme. Brain Pathol 3: 229–235, 1993

    Google Scholar 

  132. Van Meir EG, Kikuchi T, Tada M, Li H, Diserens A-C, Wojcik BE, Huang H-JS, Friedman T, de Tribolet N, Cavenee WK: Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 54: 649–652, 1994

    Google Scholar 

  133. von Deimling A, Louis DN, von Ammon K, Petersen I, Seizinger BR, Wiestler OD: Molecular genetic evidence for two distinct subsets of glioblastoma multiforme. Clin Neuropathol 11: 265–266, 1992

    Google Scholar 

  134. Sidransky D, Mikkelsen T, Schwechheimer D, Rosenblum ML, Cavanee W, Vogelstein B: Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355: 846–847, 1992

    Google Scholar 

  135. Momand J, Zambetti GP, Olson DC, George D, Levine AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245, 1992

    Google Scholar 

  136. Riefenberger C, Liu L, Ichimura K, Schmidt EE, Collins VP: Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53: 2736–2739, 1993

    Google Scholar 

  137. Lowe SW, Jacks T, Housman DE, Ruley HE: Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci USA 91: 2026–2030, 1994

    Google Scholar 

  138. Fults D, Pedone CA, Thomas GA, White R: Allelotype of human malignant astrocytoma. Cancer Res 50: 5784–5789, 1990

    Google Scholar 

  139. James CD, Caribom E, Dumanski JP, Hansen M, Nordenskjold M, Collins VP, Cavenee WK: Clonal genomic alterations in glioma malignancy stages. Cancer Res 48: 5546–5551, 1988

    Google Scholar 

  140. Venter DJ, Bevan KL, Ludwig RL, Riley TEW, Jat PS, Thomas DGT, Noble MK: Retinoblastoma gene deletions in human glioblastomas. Oncogene 6: 445–448, 1991

    Google Scholar 

  141. Henson JW, Schnitker BL, Correa KM, von Deimling A, Fassbender F, Xu H-J, Benedict WF, Yandell DW, Louis DN: The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurol 36: 714–721, 1994

    Google Scholar 

  142. Olson DC, Levine AJ: The properties of p53 proteins selected for the loss of suppression of transformation. Cell Growth Different 5: 61–71, 1994

    Google Scholar 

  143. Levine AJ, Perry ME, Chang A, Silver A, Dittmer D, Wu M, Welsh D: The 1993 Walter Hubert lecture: the role of the p53 tumour-suppressor gene in tumorigenesis. Br J Cancer 69: 409–416, 1994

    Google Scholar 

  144. Carder P, Wyllie AH, Purdie CA, Morris RG, White S, Prirs J, Bird CC: Stabilized p53 facilitates aneuploid divergence in colorectal cancer. Oncogene 8: 1397–1401, 1993

    Google Scholar 

  145. van Meyel DJ, Ramsey DA, Casson AG, Keeney M, Chambers AF, Cairncross JG: p53 mutation, expression, and DNA ploidy in evolving gliomas: evidence for two pathways of progression. J Nat Cancer Inst 86: 1011–1017, 1994

    Google Scholar 

  146. Kastan MB, Onyekwere N, Sidransky D, Vogelstein B, Craig RW: Participation of p53 protein in cellular response to DNA damage. Cancer Res 51: 6304–6311, 1991

    Google Scholar 

  147. Waga S, Hannon GJ, Beach D, Stillman B: The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369: 574–578, 1994

    Google Scholar 

  148. Hainaut P: The tumor suppressor protein p53: a receptor to genotoxic stress that controls cell growth and survival. Curr Opin Oncol 7: 76–82., 1995

    Google Scholar 

  149. Gomez-Manzano C, Fueyo J, Kyritsis AP, Steck PA, Roth JA, McDonnell TJ, Steck KD, Levin VA, Yung WKA: Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res 56: 694–699, 1996

    Google Scholar 

  150. Reiss M, Vellucci VF, Zhou Z-I: Mutant p53 tumor suppressor gene causes resistance to transforming growth factor β1 in murine keratinocytes. Cancer Res 53: 899–904, 1993

    Google Scholar 

  151. Blaydes JP, Schlumberger M, Wynford-Thomas D, Wyllie FS: Interaction between p53 and TGF?1 in control of epithelial cell proliferation. Oncogene 10: 307–317, 1995

    Google Scholar 

  152. Stratton MR, Moss S, Warren W, Patterson H, Clark J, Fisher C, Fletcher CDM, Ball A, Thomas M, Gusterson BA, Cooper CS: Mutation of the p53 gene in human soft tissue sarcomas: association with abnormalities of the RB1 gene. Oncogene 5: 1297–1301, 1990

    Google Scholar 

  153. Haupt Y, Rowan S, Oren M: p53-mediated apoptosis in HeLa cells can be overcome by excess pRB. Oncogene 10: 1563–1571, 1995

    Google Scholar 

  154. Missero C, Filvaroff E, Dotto GP: Induction of transforming growth factor β1 resistance by the E1A oncogene requires binding to a specific set of cellular proteins. Proc Natl Acad Sci USA 88: 3489–3493, 1991

    Google Scholar 

  155. Martini F, DeMattei M, Iacchieri L, Lassarin L, Barbanti-Brodano G, Tognon M, Gerosa M: Human brain tumors and simian virus 40. J Natl Cancer Inst 87: 1331, 1995

    Google Scholar 

  156. Jennings MT, Ebrahim SAD, Thaler HT, Jennings VDL, Asadourian LHH, Shapiro JR: Immunophenotypic differences between normal glia, astrocytomas and malignant gliomas: correlations with karyotype, natural history and survival. J Neuroimmunol 25: 7–28, 1989

    Google Scholar 

  157. Kerbel RS: Expression of multi-cytokine resistance and multi-growth factor independence in advanced stage metastatic cancer. Malignant melanoma as a paradigm. Am J Pathol 141: 519–524, 1992

    Google Scholar 

  158. Wrann M, Bodmer S, de Martin R, Siepl C, Hofer-Warbinek R, Frei K, Hofer E, Fontana A: T cell suppressor factor from human glioblastoma cells is a 12.5 kd protein closely related to transforming growth factor-β. EMBO J 6: 1633–1636, 1987

    Google Scholar 

  159. de Martin R, Haendler B, Hofer-Warbinek R, Gaugitsch H, Wrann M, Schlüsener H, Seifert JM, Bodmer S, Fontana A, Hofer E: Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-?βgene family. EMBO J 6: 3673–3677, 1987

    Google Scholar 

  160. Kuppner MC, Hamou M-E, Bodmer S, Fontana A, De Tribolet N: The glioblastoma-derived T-cell suppressor factor/ transforming growth factor beta2 inhibits the generation of lymphokine-activated killer (LAK) cells. Int J Cancer 42: 562–567, 1988

    Google Scholar 

  161. Bodmer S, Strommer K, Frei K, Siepl C, DeTribolet N, Heid I, Fontana A: Immunosuppression and transforming growth factor-?βin glioblastoma: preferential production of transforming growth factor-β2. J Immunol 143: 3222–3229, 1989

    Google Scholar 

  162. Torre-Amione G, Beaucamp RD, Koeppen H, Park BH, Schreiber H, Moses HL, Rowley DA: A highly immunogenic tumor transfected with a murine transforming growth factor type β1cDNA escapes immune surveillance. Proc Natl Acad Sci USA 87: 1486–1490, 1990

    Google Scholar 

  163. Schluesener HJ: Transforming growth factor type β1 and β2 suppress rat astrocytes autoantigen presentation and antagonize hyperinduction of class II histocompatibility complex antigen expression by interferon-G and tumor necrosis factor-?. J Neuroimmunol 27: 41–47, 1990

    Google Scholar 

  164. Jachimczak P, Bogdahn U, Schneider J, Behl C, Meixensberger J, Apfel R, Dörries R, Schlingensiepen K-H, Brysch W: The effect of transforming growth factor-β2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78: 944–951, 1993

    Google Scholar 

  165. Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, Dickson RB: Evidence that transforming growth factor-βis a hormonally regulated negative growth factor in human breast cancer cells. Cell 48: 417–428, 1987

    Google Scholar 

  166. Batova A, Danielpour D, Pirisi L, Creek KE: Retinoic acid induced secretion of latent transforming growth factor β1 and β2 in normal and human papillomavirus type 16-immortalized human keratinocytes. Cell Growth & Different 3: 763–772, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, M.T., Pietenpol, J.A. The role of transforming growth factor Β in glioma progression. J Neurooncol 36, 123–140 (1998). https://doi.org/10.1023/A:1005863419880

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005863419880

Navigation