Skip to main content
Log in

Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The effects of applying electric fields to a reactor with kinetics based on an ionic version of the cubic autocatalator are considered. Three types of boundary condition are treated, namely (constant) prescribed concentration, zero flux and periodic. A linear stability analysis is undertaken and this reveals that the conditions for bifurcation from the spatially uniform state are the same for both the prescribed concentration and zero-flux boundary conditions, suggesting bifurcation to steady structures, whereas, for periodic boundary conditions, the bifurcation is essentially different, being of the Hopf type, leading to travelling-wave structures. The various predictions from linear theory are confirmed through extensive numerical simulations of the initial-value problem and by determining solutions to the (non-linear) steady state equations. These reveal, for both prescribed concentration and zero-flux boundary conditions, that applying an electric field can change the basic pattern form, give rise to spatial structure where none would arise without the field, can give multistability and can, if sufficiently strong, suppress spatial structure entirely. For periodic boundary conditions, only travelling waves are found, their speed of propagation and wavelength increasing with increasing field strength, and are found to form no matter how strong the applied field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sevcikova, M. Marek and S.C. Muller, The reversal and splitting of waves in an excitable medium caused by an electric field. Science 257 (1992) 951-954.

    Google Scholar 

  2. H. Sevcikova, J. Kosek and M. Marek, Splitting of 2D waves of excitation in a direct current electric field. J. Phys. Chem. 100 (1996) 1666-1675.

    Google Scholar 

  3. J.J. Taboada, A.P. Munuzuri, V. Perez-Munuzuri, M. Gomez-Gesteira and V. Perez-Villar, Spiral break up induced by an electric current in a Belousov-Zhabotinsky medium. Chaos 4 (1994) 519-524.

    Google Scholar 

  4. S.C. Muller, O. Steinbock and J. Schutze, Autonomous pacemaker of chemical waves created by spiral annihilation. Physica A 188 (1992) 47-54.

    Google Scholar 

  5. O. Steinbock, J. Schutze and S. C. Muller, Electric-field-induced drift and deformation of spiral waves in an excitable medium. Phys. Rev. Letters 68 (1992) 248-251.

    Google Scholar 

  6. K.I. Agladze and P. DeKepper, Influence of electric field on rotating spiral waves in the Belousov-Zhabotinsky reaction. J. Phys. Chem. 96 (1992) 5239-5242.

    Google Scholar 

  7. J. Kosek, H. Sevcikova and M. Marek, Splitting of excitable pulse waves. J. Phys. Chem. 99 (1995) 6889-6896.

    Google Scholar 

  8. H. Sevcikova, I. Schreiber and M. Marek, Dynamics of oxidation Belousov-Zhabotinsky waves in an electric field. J. Phys. Chem. 100 (1996) 19153-19164.

    Google Scholar 

  9. H. Sevcikova and M. Marek, Chemical front waves in an electric field. Physica D 13 (1984) 379-386.

    Google Scholar 

  10. H. Sevcikova and M. Marek, Concentration pulses and fronts in electric fields. J. Phys. Chem. 88 (1984) 2181-2183.

    Google Scholar 

  11. H. Sevcikova, D. Snita and M. Marek, Reactions in microreactors in electric fields. In: W. Ehrfeld (ed.), Proceedings of the First International Conference on Microreactor Technology, Springer-Verlag (1997) pp. 46-54.

  12. L. Forstova, H. Sevcikova, M. Marek and J.H. Merkin, Electric field effects on the local stoichiometry of front waves. Chemical Engineering Science 55 (2000) 391-431.

    Google Scholar 

  13. D. Snita, H. Sevcikova, M. Marek and J.H. Merkin, Ionic autocatalytic reaction fronts in electric fields. J. Phys. Chem. 100 (1996) 18740-18748.

    Google Scholar 

  14. D. Snita, H. Sevcikova, M. Marek and J.H. Merkin, Travelling waves in an ionic autocatalytic chemical system with an imposed electric field. Proc. R. Soc. London A453 (1997) 2325-2351.

    Google Scholar 

  15. D. Snita, H. Sevcikova, J. Lindner, M. Marek and J.H. Merkin, Capillary electrophoresis with chemical reaction. J. Chem. Soc. Faraday Trans. 94 (1998) 213-222.

    Google Scholar 

  16. J.H. Merkin, H. Sevcikova, D. Snita, M. Marek and J.H. Merkin, The effects of an electric field on an autocatalytic ionic reaction in a system with high ionic strength. IMA J. Appl. Math. 60 (1998) 1-31.

    Google Scholar 

  17. A.B. Finlayson and J.H.Merkin, Travelling waves in an ionic quadratic autocatalytic chemical system. Math. Computer Modelling 20 (1999) 89-112.

    Google Scholar 

  18. A.B. Rovinsky, A.M. Zhabotinsky and I.R. Epstein, Stability of planar reactive fronts in external fields. Phys. Rev. E 58 (1998) 5541-5547.

    Google Scholar 

  19. P. Ortoleva, Chemical wave-electric field interaction phenomena. Physica D 26 (1987) 67-84.

    Google Scholar 

  20. P. Hasal, A.F. Munster and M. Marek, Spatiotemporal chaos in an electric current driven ionic reactiondiffusion system. Chaos 4 (1994) 531-546.

    Google Scholar 

  21. A.F. Munster, P. Hasal, D. Snita and M. Marek, Charge distribution and electric field effects on spatiotemporal patterns. Phys. Rev. E 50 (1994) 546-550.

    Google Scholar 

  22. S. Schmidt and P. Ortleva, A new chemical wave equation for ionic systems. J. Chem. Phys. 67 (1977) 3771-3776.

    Google Scholar 

  23. D. Snita and M. Marek, Transport and reaction in ionic chemical systems. Physica D 75 (1994) 521-540.

    Google Scholar 

  24. P. Gray and S.K. Scott, Chemical Oscillations and Instabilities: Non-Linear Chemical Kinetics. Oxford: Oxford University Press (1990) 534 pp.

    Google Scholar 

  25. J.H. Merkin, D.J. Needham and S.K. Scott, Oscillatory chemical reactions in closed vessels. Proc. R. Soc. London A406 (1986) 299-323.

    Google Scholar 

  26. R. Hill, J.H. Merkin and D.J. Needham, Stable pattern and standing wave formation in a simple isothermal cubic autocatalytic reaction scheme. J. Eng. Math. 29 (1995) 423-436.

    Google Scholar 

  27. R.A. Satnoianu, J.H. Merkin and S.K. Scott, Differential-flow-induced instability in a cubic autocatalator system. J. Eng. Math. 33 (1998) 77-102.

    Google Scholar 

  28. R.A. Satnoianu, J.H. Merkin and S.K. Scott, Spatio-temporal structures in a differential flow reactor with cubic autocatalator kinetics. Physica D 124 (1998) 345-367.

    Google Scholar 

  29. J.H. Merkin and D.J. Needham, Propagating reaction-diffusion waves in a simple isothermal quadratic autocatalytic chemical system. J. Eng. Math. 23 (1989) 343-356.

    Google Scholar 

  30. A.F. Munster, S. Wolff, F. Fecher, Travelling waves induced by an electric field in the MBO-reaction. In preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finlayson, A., Merkin, J. Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system. Journal of Engineering Mathematics 38, 279–296 (2000). https://doi.org/10.1023/A:1004799200173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004799200173

Navigation