Skip to main content
Log in

Mixed Sulfidation/Carburization Attack on Several Heat-Resistant Alloys at 900°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A sulfidation/carburization study of seven commercial heat-resistant alloyswas carried out at 900°C in a H2–25 vol.%CH4–14.8N2–4CO–0.6CO2–0.6H2Satmosphere. The equilibrium partial pressures for oxygen (O2) andsulfur (S2) were 1.1×10−22 and 4.1×10−8 atm,respectively, and the carbon activity for this system was unity. The time ofexposure was 500 hr. Relatively thick, mixed sulfide scales were formed onall of the alloys tested. In addition, internal carburization occurred inall of the alloys. Using metal loss (i.e., the reduction in samplethickness) plus internal attack (internal sulfidation plus internalcarburization) as a performance criterion, an alloy with a nominalcomposition of Ni–29 wt.% Co–28Cr–2.75Si performed thebest, showing 0.71 mm of attack. An alloy with a nominal composition ofFe–20 wt.% Ni–25Cr performed the worst, being totally consumedby the test (>3.18 mm of attack). Alloys containing relatively highamounts of silicon (>2.5%) showed a dramatic increase in theirsulfidation resistance compared to the other alloys containing lowersilicon contents. The amount of iron present within a given material playeda dominant role in the carburization attack that occurred, with as expected,high-iron alloys showing significant internal carburization because of ahigh solubility and diffusivity of carbon in the matrix. The importance ofthe various alloying elements with respect to sulfidation and carburizationresistance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Y. Lai, High Temperature Corrosion of Engineering Alloys (ASM International, Materials Park, OH, 1990), p. 117.

    Google Scholar 

  2. G. Sorell and W. B. Hoyt, Collection and Correlation of High Temperature Hydrogen Sulfide Corrosion Data, NACE publ. 56-7, 1956.

  3. G. Sorrell, Compilation and Correlation of High Temperature Catalytic Reformer Corrosion Data, NACE publ. 58-2, 1957.

  4. E. B. Backensto, Corrosion in Catalytic Reforming and Associated Processes, Paper presented at the 22nd Midyear Meeting of API's Division of Refining, Philadelphia, PA, May 13, 1957.

  5. S. Mrowec and K. Przybylski, High Temp. Mat. Proc. 6 (1984).

  6. S. Mrowec, Oxid Met. 44, 177 (1995).

    Google Scholar 

  7. D. J. Young, Rev. High Temp. Mat. 4, 299 (1980).

    Google Scholar 

  8. E. B. Backensto and J. W. Sjoberg, Iso-Corrosion Rate Curves for High Temperature Hydrogen-Hydrogen Sulfide, NACE publ. 59-10, 1958.

  9. W. Steinkusch, Werkst. Korros. 30, 837 (1979).

    Google Scholar 

  10. L. H. Wolfe, Mat. Perform., p. 38 (1978).

  11. R. H. Kane, Corrosion/83, Paper 266 (NACE, Houston, TX, 1983).

    Google Scholar 

  12. U. Van den Bruck and C. M. Schillmoller, Corrosion/85, Paper 23 (NACE, Houston, TX, 1985).

    Google Scholar 

  13. S. K. Roy, H. J. Grabke, and W. Weppner, Arch. Eisenhuttenwes. 51, 91 (1980).

    Google Scholar 

  14. C. Steel and W. Engel, AFS Intern. Cast Metals J., p. 28 (1981).

  15. O. Demel, E. Keil, and P. Kostecki, SGAW Rep. no. 2538, Osterreichische Studiengesellschaft fur Atomenergie.

  16. H. J. Grabke, U. Gravenhorst, and W. Steinkusch, Werk. Korros. 27, 291 (1976).

    Google Scholar 

  17. S. K. Bose and H. J. Grabke, Z. Metallk. 69, 8 (1978).

    Google Scholar 

  18. J. F. Norton and T. P. Levi, Werkst. Korros. 46, 286 (1995).

    Google Scholar 

  19. J. A. Kneeshaw, I. A. Menzies, and J. F. Norton, Werkst. Korros. 38, 473 (1987).

    Google Scholar 

  20. S. M. Watson, Mixed Internal Oxidation of Commercial Heat-Resistant Alloys in Carbon, Sulphur, and Oxygen Containing Environments, Master Thesis, University of New South Wales, School of Materials Science and Engineering, Sydney, Australia, p. 133.

  21. M. Schulte, A. Rahmel, and M. Schütze, Oxid Met. 49, 33 (1998).

    Google Scholar 

  22. D. B. Rao and H. G. Nelson, Oxid Met. 12, 111 (1978).

    Google Scholar 

  23. P. Castello, Y. Niu, F. Gesmundo, and F. H. Stott, Oxid. Met., submitted for publication.

  24. J. F. Norton, private communication, 1998.

  25. J. A. Colwell and R. A. Rapp, Met. Trans., 17A, 1065 (1986).

    Google Scholar 

  26. C. S. Giggins and F. S. Pettit, Oxid. Met. 14, 363 (1980).

    Google Scholar 

  27. M. F. Stroosnijder, V. Guttmann, and J. H. W. de Wit, Werkst. Korros. 41, 503 (1990).

    Google Scholar 

  28. D. J. Young and S. Watson, Oxid Met. 44, 239 (1995).

    Google Scholar 

  29. G. Y. Lai, in High Temperature Corrosion in Energy Systems, M. F. Rothman, Ed. (Metallurgical Society of AIME, Warrendale, PA, 1985), p. 227.

    Google Scholar 

  30. M. A. H. Howes, High Temperature Corrosion in Coal Gasification Systems, Final Rep. GRI-8710152, Gas Research Institute, Chicago, August, 1987.

    Google Scholar 

  31. J. F. Norton, M. Maier, and W. T. Bakker, Corrosion/97, Paper 144 (NACE, Houston, TX, 1997).

    Google Scholar 

  32. J. F. Norton and J. Barnes, in Corrosion in Fossil Fuel Systems, I. G. Wright, ed. (Electrochemical Society, Pennington, NJ, 1983), p. 277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, M.A., Cotner, J.P. Mixed Sulfidation/Carburization Attack on Several Heat-Resistant Alloys at 900°C. Oxidation of Metals 53, 427–449 (2000). https://doi.org/10.1023/A:1004698024506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004698024506

Navigation