Skip to main content
Log in

Comparative Study on the Oxidation Behavior of Austenitic and Ferritic Heat-Resistant Stainless Steels at High Temperatures

  • Properties of Interfaced Materials and Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A comparative study of the high-temperature oxidation behavior and mechanism of 0Cr25Ni20 austenitic heat-resistant stainless steel (AHSS) and 0Cr18AlSi ferritic heat-resistant stainless steel (FHSS) at 800°C, 900°C, and 1000°C in air up to 140 h was performed using isothermal oxidation tests. The oxidation kinetics of 0Cr25Ni20 AHSS and 0Cr18AlSi FHSS followed the parabolic law. The oxide films on 0Cr25Ni20 AHSS were composed of continuous and dense Cr2O3, MnCr2O4, and a small amount of NiMn2O4, whereas silicon exhibited internal oxidation and deteriorated the adhesion between the oxide film and substrate. Nickel-free 0Cr18AlSi FHSS exhibited good oxidation resistance at 800°C and 900°C due to dense, continuous, and well-adhered multicomponent oxide films containing Al2O3, Cr2O3, MnCr2O4, and a small amount of MnFe2O4. The oxidation resistance of 0Cr18AlSi FHSS declined at 1000°C, mainly due to the formation of nonprotective Fe2O3 and severe internal oxidation of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.L. Klueh and A.T. Nelson, J. Nucl. Mater. 371, 37 (2007).

    Article  Google Scholar 

  2. Ł. Kowalczyk, W. Elsner, P. Niegodajew, and M. Marek, Appl. Therm. Eng. 96, 200 (2016).

    Article  Google Scholar 

  3. R. Viswanathan, K. Cpleman, and U. Rao, Int. J. Pres. Ves. Pip. 83, 778 (2006).

    Article  Google Scholar 

  4. F. Masuyama, ISIJ Int. 41, 612 (2001).

    Article  Google Scholar 

  5. J.H. Kim, B.K. Kim, D.I. Kim, P.P. Choi, D. Raabe, and K.W. Yi, Corros. Sci. 96, 52 (2015).

    Article  Google Scholar 

  6. N. Karimi, F. Riffard, F. Rabaste, S. Perrier, R. Cueff, C. Issartel, and H. Buscail, Appl. Surf. Sci. 254, 2292 (2008).

    Article  Google Scholar 

  7. V.T. Ha and W.S. Jung, Mater. Sci. Eng., A 558, 103 (2012).

    Article  Google Scholar 

  8. X. Zhong, S. Xia, J. Xu, and T. Shoji, J. Nucl. Mater. 511, 417 (2018).

    Article  Google Scholar 

  9. Q.X. Dai, Metal material science, 2nd ed. (Beijing: Chemical Industry Press, 2011), pp. 134–138.

    Google Scholar 

  10. S. Ningshen, M. Sakairi, K. Suzuki, and S. Ukai, Appl. Surf. Sci. 274, 345 (2013).

    Article  Google Scholar 

  11. Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, W. Zheng, D. Guzonas, M. Chmielus, W. Chen, and J.L. Luo, Mater. Charact. 120, 273 (2016).

    Article  Google Scholar 

  12. H. Li, B. Zhang, Z. Jiang, S. Zhang, H. Feng, P. Han, N. Dong, W. Zhang, G. Li, G. Fan, and Q. Lin, J. Alloys Compd. 686, 326 (2016).

    Article  Google Scholar 

  13. M.E. Story and B.A. Webler, JOM 70, 1225 (2018).

    Article  Google Scholar 

  14. M.L. Lau and E.J. Lavernia, Mater. Sci. Eng., A 272, 222 (1999).

    Article  Google Scholar 

  15. I. Saeki, H. Konno, and R. Furuichi, Corros. Sci. 38, 19 (1996).

    Article  Google Scholar 

  16. Z. Oksiuta, J. Mater. Sci. 48, 4801 (2013).

    Article  Google Scholar 

  17. H. Fujikawa and S.B. Newcomb, Oxid. Met. 77, 85 (2012).

    Article  Google Scholar 

  18. M.P. Brady, Y. Yamamoto, M.L. Santella, P.J. Mazias, B.A. Pint, C.T. Liu, Z.P. Lu, and H. Be, JOM 60, 12 (2008).

    Article  Google Scholar 

  19. C. Boulesteix and F. Pedraza, Surf. Coat. Tech. 339, 27 (2018).

    Article  Google Scholar 

  20. T. Liu, C. Wang, H. Shen, W. Chou, N.Y. Iwata, and A. Kimura, Corros. Sci. 76, 310 (2013).

    Article  Google Scholar 

  21. J. Yu, S. Liu, F. Li, and T. Wang, Surf. Coat. Tech. 309, 1089 (2017).

    Article  Google Scholar 

  22. D.N. Zou, Y.Q. Zhou, X. Zhang, W. Zhang, and Y. Han, Mater. Charact. 136, 435 (2018).

    Article  Google Scholar 

  23. Y. Xu, X. Zhang, L. Fan, J. Li, X. Yu, X. Xiao, and L. Jiang, Corros. Sci. 100, 311 (2015).

    Article  Google Scholar 

  24. T.J. Park, J.P. Kong, S.H. Uhm, I.S. Woo, J.S. Lee, and C.Y. Kan, J. Mater. Proc. Tech. 211, 415 (2011).

    Article  Google Scholar 

  25. Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, Y. Sun, S. Liu, E. Aghaie, Y. Zeng, M. Chmielus, W. Zheng, D. Guzonas, W. Chen, and J.L. Luo, Corros. Sci. 106, 188 (2016).

    Article  Google Scholar 

  26. M.R. Ardigo-Besnard, I. Popa, O. Heintza, R. Chassagnon, M. Vilasi, F. Herbst, P. Girardon, and S. Chevalier, Appl. Surf. Sci. 412, 196 (2017).

    Article  Google Scholar 

  27. Q.Z. Gao, X. Dong, C. Li, Z.X. Lin, X.X. Yang, and M. Dai, J. Alloys Compd. 651, 537 (2015).

    Article  Google Scholar 

  28. G. Fu and L. Wei, Surf. Coat. Tech. 294, 8 (2016).

    Article  Google Scholar 

  29. C. Wagner, J. Electrochem. Soc. 99, 369 (1952).

    Article  Google Scholar 

  30. M.S. Li, High temperature corrosion of metals, 1st ed. (Beijing: Metallurgical Industry Press, 2001), pp. 3–10.

    Google Scholar 

  31. J.G. Goedjen and D.A. Shores, Oxid. Metals 37, 125 (1992).

    Article  Google Scholar 

  32. Y. Behnamian, A. Mostafaei, A. Kohandehghan, B. Zahiri, W. Zheng, D. Guzonas, M. Chmielus, W. Chen, and J. Luo, J. Supercrit. Fluid. 127, 191 (2017).

    Article  Google Scholar 

  33. M. Rivollier, J.L. Courouau, M. Tabarant, C. Blanc, and M. Giorgi, J. Nucl. Mater. 500, 337 (2018).

    Article  Google Scholar 

  34. S. Swaminathan, Y.S. Lee, and D.I. Kim, J. Power Sources 327, 104 (2016).

    Article  Google Scholar 

  35. X. Cheng, L. Fan, H. Yin, L. Liu, K. Du, and D. Wang, Corros. Sci. 112, 54–62 (2016).

    Article  Google Scholar 

  36. J. Wang, S. Lu, L. Rong, D. Li, and Y. Li, Corros. Sci. 111, 13 (2016).

    Article  Google Scholar 

  37. F.H. Stott, G.C. Wood, and J. Stringert, Oxid. Metals. 44, 113 (1995).

    Article  Google Scholar 

  38. L.F. He, P. Roman, B. Leng, K. Sridharan, M. Anderson, and T.R. Allen, Corros. Sci. 82, 67 (2014).

    Article  Google Scholar 

  39. G.C. Wood, Oxid. Metals 2, 11 (1970).

    Article  Google Scholar 

  40. R. Haugsrud, Corros. Sci. 45, 211 (2003).

    Article  Google Scholar 

  41. A. Col, V. Parry, and C. Pascal, Corros. Sci. 114, 17 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of this work by the National Natural Science Foundation of China (51774226), Iron and Steel Joint Fund of the National Natural Science Foundation of China (U1460104), Scientific Research Program of Shaanxi Education Department (17JF013), Key Program of Shaanxi Province (2018ZDXM-GY-149), and Major Program of Science and Technology in Shanxi Province (No. 20181101016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dening Zou or Libo Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zou, D., Pang, Y. et al. Comparative Study on the Oxidation Behavior of Austenitic and Ferritic Heat-Resistant Stainless Steels at High Temperatures. JOM 71, 3744–3754 (2019). https://doi.org/10.1007/s11837-019-03579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03579-5

Navigation