Skip to main content
Log in

Nutrient enrichment and zooplankton effects on the phytoplankton community in microcosms from El Andino reservoir (Venezuela)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To quantify the effects of nutrient enrichment (N and P) and zooplankton grazing on the phytoplankton community structure of El Andino reservoir (Venezuela), in situ microcosms were installed for 6–7 days. Microcosms consisted of polyethylene bags (42 cm × 71 cm, non-cylindrical shaped) filled with 10 l of filtered epilimnetic water. Experiments were carried out on a monthly basis from January to December 1993. The lack/addition of nutrients was cross-classified with the absence/presence of zooplankton, resulting in an experimental design of four treatment levels: (1) no nutrient addition, zooplankton absent (C); (2) nutrient addition (150 NH4Cl μmol ml−1 and 10 KH2PO4 μmol ml−1; 1 ml per l of sample), zooplankton absent (N); (3) no nutrient addition, zooplankton present (collected from the reservoir water column using a 6-m vertical tow with a 80-μm plankton net) (Z); and (4) nutrient addition (as in [2]), zooplankton present (as in [3]) (NZ). Treatments were triplicated, and samples were collected at the start and end of each experiment. Significant differences between treatments were determined using a two-way ANOVA at p<0.05. Nutrient enrichment caused an increase in phytoplankton biomass, with the increase of all algal groups, except Pyrrhophyta. In spite of this, relative proportions of Cyanobacteria decreased in most cases. Chlorophyta and Bacillariophyta increased, probably due to their greater competitive abilities for phosphorus. After enrichment, Scenedesmus was the dominant species from January to June, while from July to December, Dactylococcopsis and Lyngbya dominated in the enriched microcosms. Zooplankton affected the phytoplankton community in microcoms through grazing and nutrient (mainly P) regeneration. Cladocerans (Ceriodaphnia cornuta, Moina micrura and Diaphanosoma sp.) mainly grazed on diatoms, although particulate material was present in almost all the gut contents analyzed. Particulate material probably consisted of micro-algae, detritus, bacteria, triturated algae and mineral particles. Ostracoda mainly fed on Peridinium and particulate material, whereas Thermocyclops sp. and rotifers (Brachionus spp. and Keratella spp.) mainly ingested particulate material. On the other hand, zooplankton excretion caused a slight increase in phytoplankton biomass and P concentrations in microcosms with the animals present. The effects of nutrient and zooplankton did not interact in most cases. Experimental results suggest that, at the initial stages of a eutrophication process, phytoplankton could increase their abundance and biomass, but might not change its community structure. Since there was a strong correlation between phosphorus and chlorophyll-a (bottom-up control), it is suggested that eutrophication could be avoided by controlling P input to the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcifa, M. S., T. G. Northcote & O. Froehlich, 1986. Fishzooplankton interactions and their effects over water quality of a tropical Brazilian reservoir. Hydrobiologia 139: 49–58.

    Google Scholar 

  • Arcifa, M. S., F. L. R. M. Starling, L. H. Sipauva-Tavares & X. Lazzaro, 1995. Experimental Limnology. In: Tundisi, J. G., C. E. M. Bicudo & T. Matsumura-Tundisi (eds), Limnology in Brazil. Brazilian Academy of Sciences and Brazilian Limnology Society, Rio de Janeiro: 257–281.

    Google Scholar 

  • Bergquist, A. M. & S. R. Carpenter, 1986. Limnetic herbivory: Effects on phytoplankton populations and primary production. Ecology 67: 1351–1360.

    Google Scholar 

  • Carpenter, S. R., 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77: 677–680.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Google Scholar 

  • Carpenter, S. R., K. L. Cottingham & D. E. Schindler, 1992. Biotic feedbacks in lake phosphorus cycles. Trend. Ecol. Evol. 7: 332–336.

    Google Scholar 

  • Chow-Fraser, P., 1986. Effect of collection and acclimatization period on grazing rates of limnetic zooplankton. Hydrobiologia 137: 203–207.

    Google Scholar 

  • Cisneros, R., E. Hooker & L. E. Vásquez, 1991.Natural diet of herbivorous zooplankton in lake Xolotlán (Managua). Hydrobiol. Bull. 25: 163–167.

    Google Scholar 

  • De Costa, J., A. Janicki, G. Shellito & G. Wilcox, 1983. The effect of phosphorus additions in enclosures on the phytoplankton and zooplankton of an acid lake. Oikos 40: 283–294.

    Google Scholar 

  • Den Oude, P. J. & R. D. Gulati, 1988. Phosphorus and nitrogen excretion rates of zooplankton from the eutrophic Loosdrecht lakes, with notes on other P sources for phytoplankton requirements. Hydrobiologia 169: 379–390.

    Google Scholar 

  • Dos Santos, A. C. A. & M. C. Calijuri, 1997. Phytoplankton communities over a short period of time, in the Barra Bonita Reservoir (State of São Paulo, Brazil): microcosm. Verh. int. Ver. Limnol. 26: 468–471.

    Google Scholar 

  • Downing, J. A. & E. McCauley, 1992. The nitrogen: phosphorus relationships in lakes. Limnol. Oceanogr. 37: 936–945.

    Google Scholar 

  • Edmondson, W. T., 1957. Trophic relations of the zooplankton. Trans. am. microsc. Soc. 76: 225–245.

    Google Scholar 

  • Elser, J. J., 1992. Phytoplankton dynamics and the role of grazers in Castle lake, California. Ecology 73: 887–902.

    Google Scholar 

  • Elser, J. J. & C. R. Goldman, 1991. Zooplankton effects on phytoplankton in lakes of contrasting trophic status. Limnol. Oceanogr. 36: 64–90.

    Google Scholar 

  • Fraser, L. H. & P. Keddy, 1997. The role of experimental microcosms in ecological research. Trend. Ecol. Evol. 12: 478.481.

    Google Scholar 

  • Ginez, A. & M. L. Olivo, 1984. Inventarios de los embalses con información básica para la actividad piscícola. I. Sinopsis de los embalses administrados por el MARNR. Ministerio del Ambiente y de los Recursos Naturales Renovables. Serie Informes Técnicos DGSPOA/IT/183. Caracas: 142 pp.

  • Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. Pol. 17: 663–708.

    Google Scholar 

  • Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in a eutrophic lake. Ekol. Pol. 25: 175–225.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 83–97.

    Google Scholar 

  • Gómez, E., 1984. Aspectos de la dieta natural del zooplancton herbívoro en el embalse de Agua Fría (Edo. Miranda). Tesis de Licenciatura. Universidad Central de Venezuela. Caracas, 126 pp.

    Google Scholar 

  • González, E. J., 1998. Natural diet of zooplankton in a tropical reservoir (El Andino reservoir, Venezuela). Verh. int. Ver. Limnol. 26: 1930–1934.

    Google Scholar 

  • González, E. J. & M. Ortaz, 1998. Efectos del enriquecimiento con N y P sobre la comunidad del fitoplancton en microcosmos de un embalse tropical (La Mariposa, Venezuela). Rev. Biol. trop. 46: 27–34.

    Google Scholar 

  • Grover, J. P., D. McKee & S. Young, 1994. Algal-herbivore dynamics in P-limited microcosms. Verh. int. Ver. Limnol. 25: 2360.

    Google Scholar 

  • Havens, K. E. & J. De Costa, 1986. A comparison of phytoplankton responses to nutrient addition in acidic and circumneutral pH lakewater. Hydrobiologia 137: 211–222.

    Google Scholar 

  • Henry, R. & J. G. Tundisi, 1982. Efeitos de enriquecimento artificial por nitrato de fosfato no crescimento da comunidade fitoplanctônica da Represa de Lobo ('Broa', Brotas-Itirapina, SP). Ciência e Cultura 34: 518–524.

    Google Scholar 

  • Henry, R., K. Hino, J. G. Tundisi & S. B. Ribeiro, 1985. Responses of phytoplankton in lake Jacaretinga to enrichment with nitrogen and phosphorus in concentrations similar to those of the River Solimoes (Amazon, Brazil). Arch. Hydrobiol. 103: 453–477.

    Google Scholar 

  • Hillbricht-Ilkowska, A., 1977. Trophic relations and energy flow in pelagic plankton. Pol. Ekol. stud. 3: 3–98.

    Google Scholar 

  • Infante, A., 1978a. Natural food of herbivorous zooplankton of lake Valencia (Venezuela). Arch. Hydrobiol. 82: 347–348.

    Google Scholar 

  • Infante, A., 1978b. A method for the study of foods of herbivorous zooplankton. Trans. am. microsc. Soc. 97: 256–258.

    Google Scholar 

  • Infante, A., O. Infante & E. J. González, 1995. Proyecto Multinacional deMedio Ambiente y Recursos Naturales Renovables. Informe final: II Etapa (embalses El Andino y El Cují). Universidad Central de Venezuela (UCV) y Organización de los Estados Americanos (OEA). Caracas: 60 pp.

    Google Scholar 

  • Köthe, A., V. Faltin, N. Kamjunke & J. Benndorf, 1997. The structure-forming impact of zooplankton on phytoplankton in a whole-lake biomanipulation experiment. Verh. int. Ver. Limnol. 26: 712–714.

    Google Scholar 

  • Lenz, P. H., J. M. Melack, B. Robertson & E. A. Hardy, 1986. Ammonium and phosphate regeneration by the zooplankton of an Amazon floodplain lake. Freshwat. Biol. 16: 821–830.

    Google Scholar 

  • Margalef, R., 1983. Limnología. Ediciones Omega. Barcelona: 1010 pp.

  • Matveev, V., L. Matveeva & G. L. Jones, 1994. Phytoplankton stimulation by mosquitofish in the presence of large Daphnia. Verh. int. Ver. Limnol. 25: 2193–2197.

    Google Scholar 

  • Mazumder, A., 1994a, Phosphorus-chlorophyll relationship under contrasting herbivory and thermal stratification: predictions and patterns. Can. J. Fish. aquat. Sci. 51: 390–400.

    Google Scholar 

  • Mazumder, A. 1994b, Phosphorus-chlorophyll relationship under contrasting zooplankton community structure. Can. J. Fish. aquat. Sci. 51: 401–407.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • Moegenburg, S. M. & M. J. Vanni, 1991. Nutrient regeneration by zooplankton: Effects on nutrient limitation of phytoplankton in a eutrophic lake. J. Plankton Res. 13: 573–588.

    Google Scholar 

  • Neill, W. E., 1988. Complex interactions in oligotrophic lake food webs: responses to nutrient enrichment. In: Carpenter, S. R. (ed.), Complex Interactions in Lake Communities. Springer-Verlag, New York: 38–52.

    Google Scholar 

  • Nusch, E. A. & G. Palme, 1975. Biologische Methoden für der Praxis der Gewässeruntersuchung, Bestimmung des Chlorophyll-a und Phaeopigment-gehaltes in Oberflachenwäser. GWF-Wasser/Abwässer 116: 562–565).

    Google Scholar 

  • Oliveira, M. A., 1992. Influencia de la depredación por zooplancton sobre la composición de una comunidad planctónica. Tesis de Licenciatura. Universidad Simón Bolívar. Caracas: 114 pp.

    Google Scholar 

  • Pace, M. L., 1984. Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship. Can. J. Fish. aquat. Sci. 41: 1089–1096.

    Google Scholar 

  • Pérez-Martínez, C. & L. Cruz-Pizarro, 1993. Changes in the phytoplankton structure and biomass after experimental fertilization and zooplankton biomanipulations in a mesotrophic reservoir. Verh. int. Ver. Limnol. 25: 1232–1235.

    Google Scholar 

  • Pollingher, U., T. Berman, B. Kaplan & D. Scharf, 1988. Lake Kinneret phytoplankton: response to N and P enrichments in experimental and in nature. Hydrobiologia 166: 65–75.

    Google Scholar 

  • Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–170.

    Google Scholar 

  • Queimaliños, C. P. & B. E. Mondenutti, 1993. Experimental analysis of the rotifer-cladoceran effect on phytoplankton. Verh. int. Ver. Limnol. 25: 943–946.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press. Cambridge: 384 pp.

    Google Scholar 

  • Ringelberg, J. & K. Kersting, 1978. Properties of an aquatic micro-ecosystem. I. General introduction to prototypes. Arch. Hydrobiol. 83: 47–68.

    Google Scholar 

  • Roche, K. F., E. V. Sampaio, D. Texeira, T. Matsumura-Tundisi, J. G. Tundisi & H. J. Dumont, 1993. Impact of Holoshestes heterodon Eigenman (Pisces: Characidae) on the plankton community of a subtropical reservoir: the importance of predation by Chaoborus larvae. Hydrobiologia 254: 7–20.

    Google Scholar 

  • Salas, H. & P. Martinó, 1991. A simplified phosphorus trophic model state for warm-water tropical lakes. Wat. Res. 25: 341–350.

    Google Scholar 

  • Sas, H., 1989. Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolations. Academic Verlag Richarz, St. Augustin.

    Google Scholar 

  • Siegel, S., 1988. Estadística no paramétrica. 2nd edn. Editorial Trillas. México: 344 pp.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1979. Biometría. H. Blume Ediciones. Madrid: 832 pp.

    Google Scholar 

  • Sommer, U., 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch. Hydrobiol. 96: 399–416.

    Google Scholar 

  • Sommer, U., 1988. Phytoplankton succession in microcosm experiment under simultaneous grazing presence and resource limitation. Limnol. Oceanogr. 33: 1037–1054.

    Google Scholar 

  • Stockner, J. G., 1981. Whole-lake fertilization for the enhancement of sockeye salmon (Oncorhynchus nerka) in Britsh Columbia, Canada. Verh. int. Ver. Limnol. 21: 293–299.

    Google Scholar 

  • Stockner, J. G. & K. S. Shortreed, 1985. Whole-lake fertilization experiments in coastal British Columbia lakes: empirical relationships between nutrient inputs and phytoplankton biomass and production. Can. J. Fish. aquat. Sci. 42: 649–658.

    Google Scholar 

  • Tundisi, J. G. & R. Henry, 1986. Effects of enrichment on the summer surface phytoplanktonic community in a stratified tropical lake (Lake D. Helvécio-Parque Florestal do Rio Doce-Minas Gerais). Rev. Brasil. Biol. 46: 231–237.

    Google Scholar 

  • Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar. Chem. 10: 109–122.

    Google Scholar 

  • Vanni, M. J., 1987. Effects of nutrient and zooplankton size on the structure of a phytoplankton lake. Ecology 69: 624–635.

    Google Scholar 

  • Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the 'Top-down' effect of fish on algae in lakes. Ecology 78: 21–40.

    Google Scholar 

  • Vanni, M. J. & D. L. Findlay, 1990. Trophic cascades and phytoplankton community structure. Ecology 71: 921–937.

    Google Scholar 

  • Vanni, M. J., C. D. Layne & S. E. Arnott, 1997. 'Top-down' trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology 78: 1–20.

    Google Scholar 

  • Wetzel, R. & G. E. Likens, 1991. Limnological analyses. 2nd edn. Springer-Verlag. New York: 391 pp.

    Google Scholar 

  • Yasuno, M., N. Takamura & T. Hanazato, 1993. Nutrient enrichment experiment using small microcosm. In: Gopal, B., A. Hillbricht-Ilkowska & R.G. Wetzel (eds), Wetlands and Ecotones. Studies on Land-Water Interactions. National Institute of Ecology and National Scientific Publications. New Delhi: 181–193.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, E.J. Nutrient enrichment and zooplankton effects on the phytoplankton community in microcosms from El Andino reservoir (Venezuela). Hydrobiologia 434, 81–96 (2000). https://doi.org/10.1023/A:1004060027616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004060027616

Navigation