Skip to main content
Log in

Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The relationships between long-term surface average concentrations of humic acids measured as water colour, dissolved organic carbon (DOC) or Secchi disk transparency and trophic state variables were studied with literature data from more than 600 freshwater lakes. The geometric means of summer surface average nutrient (phosphorus and nitrogen) concentration, phytoplankton biomass (chlorophyll concentration), and hypolimnetic anoxia (anoxic factor) were significantly higher in coloured than in clear lakes. The regressions of colour or DOC on these trophic state variables were positive and significant throughout a range of three orders of magnitude. Phytoplankton or primary productivity was higher in coloured lakes, when expressed per volume of epilimnion. Annual integral primary productivity expressed on an areal basis was smaller in coloured lakes, probably a reflection of shallower phototrophic depths in these lakes. There is evidence that annual integral bacteria productivity is much higher in coloured lakes for two reasons: first, epilimnetic bacteria production was ca. four times higher in coloured lakes, second, other studies have shown that hypolimnetic bacteria production is commonly higher than epilimnetic production, especially in anoxic hypolimnia that are frequent in coloured lakes. All volumetrically expressed variables indicated higher productivity in coloured lakes. In addition, high bacteria productivity reflects a different food chain involving mixotrophs, possibly compensating for low light conditions. Our analyses indicate that primary and secondary productivity is as high as or higher than in clear lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, I., F. Sorenssen, T. Waara & K. Vrede. 1994. Nitrogen budgets in relation to microbial transformations in lakes. Ambio 23: 367–377.

    Google Scholar 

  • Beauchamp, S. T. & J. Kerekes, 1989. Effects of acidity and DOC on phytoplankton community structure and production in three acid lakes (Nova Scotia). Wat. Air Soil Pollut. 46: 323–333.

    CAS  Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1991. Importance of latitude and organic color on phytoplankton primary productivity in Florida lake. Can. J. Fish. aquat. Sci. 48: 1145–1150.

    Google Scholar 

  • Carpenter, S. R., J. J. Cole, J. F. Kitchell & M. L. Pace, 1998. Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnol. Oceanogr. 43: 73–80.

    Article  CAS  Google Scholar 

  • Cole, J. J. & M. L. Pace 1995. Bacterial secondary production in oxic and anoxic freshwaters. Limnol. Oceanogr. 40: 1019–1027.

    Article  Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Progress Series, 43: 1–10.

    Google Scholar 

  • Cole, J. J., M. L. Pace, N. F. Caraco & G. S. Steinhart, 1993. Bacterial biomass and cell size distributions in lakes: More and larger cells in anoxic waters. Limnol. Oceanogr. 38: 1627–1632.

    Google Scholar 

  • Currie, D. J. 1990. Large-scale variability and interactions among phytoplankton bacterioplankton, and phosphorus. Limnol. Oceanogr. 35: 1437–1455.

    Google Scholar 

  • Cuthbert, I. D. & P. A. Del Giorgio, 1992. Toward a standard method of measuring color in freshwater. Limnol. Oceanogr. 37: 1319–1326.

    CAS  Google Scholar 

  • Cyr, H. & R. H. Peters, 1996. Biomass-size spectra and the prediction of fish biomass in lakes. Can. J. Fish. aquat. Sci. 53: 994–1006.

    Article  Google Scholar 

  • De Haan, H., 1974. Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (The Netherlands). Freshwat. Biol. 4: 301–310.

    Article  Google Scholar 

  • Del Giorgio, P. A. & R. H. Peters, 1994. Patterns in planktonic P:R ratios in lakes: Influence of lake trophy and dissolved organic carbon. Limnol. Oceanogr. 39: 772–787.

    Article  CAS  Google Scholar 

  • Del Giorgio, P. A., J. J. Cole & A. Cimbleris, 1997. Respiration rates in bacteria exceed phytoplankton productivity in unproductive aquatic systems. Nature 385: 148–151.

    Article  CAS  Google Scholar 

  • Fee, E. J., 1979. A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnol. Oceanogr. 24: 401–416.

    CAS  Google Scholar 

  • Fee, E. J., R. E. Hecky, S. E. M., Kasian & D. R. Cruikshank, 1996. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 41: 912–920.

    Article  CAS  Google Scholar 

  • France, R. L., 1992. Climatic governance of the latitudinal cline in seasonality of freshwater phytoplankton production. Int. J. Biometeorol. 36: 243–244.

    Google Scholar 

  • Gjessing E. T. 1976. Physical and chemical characteristics of aquatic humus. Ann Arbor Science, 120 pp.

  • Granberg, K. & H. Harjula. 1982. Nutrient dependence of phytoplankton production in brown-water lakes with special reference to Lake Paijann. Hydrobiologia 86: 129–132.

    Article  CAS  Google Scholar 

  • Håkanson, L., 1995. Models to predict lake annual mean total phosphorus. J. Aquat. Ecol. Syst. Health 4: 25–58.

    Article  Google Scholar 

  • Havens, K. E., 1991. Summer zooplankton dynamics in the limnetic and littoral zones of a humic acid lake. Hydrobiologia 215: 21–29.

    Article  Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake: Pool sizes and cycling through zooplankton. Limnol. Oceanogr. 35: 84–99.

    CAS  Google Scholar 

  • Jansson, M., P. Blomqvist, A. Jonsson & A.-K. Bergström. 1996. Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket. Limnol. Oceanogr. 41: 1552–1559.

    Article  CAS  Google Scholar 

  • Jeffries, D. S., J. R. M. Kelso & I. K. Morrison. 1988. Physical, chemical and biological characteristics of the Turkey Lakes Watershed, central Ontario, Canada. Can. J. Fish. aquat. Sci. 45 (Suppl.1): 3–13.

    CAS  Google Scholar 

  • Jones, R. I. 1992. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229: 73–91.

    CAS  Google Scholar 

  • Letarte, Y. & B. Pinel-Alloul, 1991. Relationships between bacterioplankton production and limnological variables: Necessity of bacterial size considerations. Limnol. Oceanogr. 36: 1208–1216.

    Google Scholar 

  • Manly, B. F. J. 1991. Randomization and Monte Carlo methods in biology. Chapman and Hall, New York.

    Google Scholar 

  • Meyer, J. J. R. T. Edward & R. Risley, 1987. Bacterial growth on dissolved organic carbon from a blackwater river. Microb. Ecol. 13: 13–29.

    Article  CAS  Google Scholar 

  • Morris, D. P. & W. M. Lewis, 1992. Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado. Limnol. Oceanogr. 37: 1179–1192.

    CAS  Google Scholar 

  • Nürnberg, G. K., 1995a. Quantifying anoxia in lakes. Limnol. Oceanogr. 40: 1100–1111.

    Article  Google Scholar 

  • Nürnberg, G. K., 1995b. Anoxic factor, a quantitative measure of anoxia and fish species richness in Central Ontario lakes. Trans. am. Fish. Soc. 124: 677–686.

    Article  Google Scholar 

  • Nürnberg, G. K., 1996. Trophic state of clear and colored, soft-and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv. Manage. 12: 432–447.

    Article  Google Scholar 

  • Olsson, H. & A. Petterson, 1993. Oligotrophication of acidified lakes 1–a review of hypotheses. Ambio 22: 312–317.

    Google Scholar 

  • Prakash, A. & D. J. MacGregor. 1983. Environmental and human health significance of humic materials: an overview. In R. F. Christman & E. T. Gjessing (eds), Aquatic and Terrestrial Humic Materials, Chap. 25. Ann Arbor, 538 pp.

  • Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.

    Google Scholar 

  • Salonen, K., M. Jarvinen, K. Kuoppamaki & L. Arvola. 1990. Effects of liming on the chemistry and biology of a small acid humic lake. In Kauppi et al. (ed.), Acidification in Finland, Springer, Berlin.

    Google Scholar 

  • Schindler, D.W., P. J. Curtis, S. E. Bayley, B. R. Parker, K. G. Beaty & M. P. Stainton, 1996. Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry. 5: 1–20.

    Google Scholar 

  • Scully, N. M. & D. R. S. Lean, 1994. The attenuation of ultraviolet radiation in temperate lakes. Arch. Hydrobiol. Suppl. 43: 135–144.

    Google Scholar 

  • Shaw, P., 1994. The effect of pH, dissolved humic substances, and ionic composition on the tranfer of iron and phosphate to particulate size frations in epilimnetic lake water. Limnol. Oceanogr. 39: 1734–1743.

    CAS  Google Scholar 

  • Smith, V. H., 1979. Nutrient dependence of primary productivity in lakes. Limnol. Oceanogr. 24: 1051–1064.

    Google Scholar 

  • Smith, V. H. 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnol. Oceanogr. 27: 1101–112. Sullivan (& 8 coauthors) 1990. Variation in Adirondack, New York, lakewater chemistry as function of surface area. Wat. Res. Bull. (AWRA) 26: 167–176.

    CAS  Google Scholar 

  • Sundh, I. & R. T. Bell, 1992. Extracellular dissolved organic carbon released from phytoplankton as a source of carbon for heterotrophic bacteria in lakes of different humic content. Hydrobiologia 229: 93–106.

    CAS  Google Scholar 

  • Thurman, E. M. 1985. Organic Geochemistry of Natural Water. Dr W. Junk Publishers, Boston, 497 pp.

    Google Scholar 

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production. J. Plankton Res. 11: 985–1000.

    Google Scholar 

  • Tulonen, T., P. Kankaala, A. Ojala & L. Arvola., 1994. Factors controlling production of phytoplankton and bacteria under ice in a humic, boreal lake. J. Plankton Res. 16: 1411–1432.

    Google Scholar 

  • Tzaras, A. & F. R. Pick. 1994. The relationship between bacterial and heterotrophic flagellate abundance in oligotrophic to mesotrophic temperate lakes. Mar. Microbiol. Food Webs n8: 347–355.

    Google Scholar 

  • Urban, N. R., E. Gorham, J. K. Underwood, F. B. Martin & J. G. Ogden, 1990. Geochemical processes controlling concentrations of Al, Fe, and Mn in Nova-Scotia lakes. Limnol. Oceanogr. 35: 1516–1534.

    Article  CAS  Google Scholar 

  • Williamson, C. E., R.S., S., D. P. Morris, T. M. Frost & S. G. Paulsen, 1996. Ultraviolet radiation in North American lakes: Attenuation estimates from DOC measurements and implications for plankton communities. Limnol. Oceanogr. 41: 1024–1034.

    CAS  Google Scholar 

  • Yan, N. D. 1983. Effects of changes in pH on transparency and thermal regimes of Lohi Lake, near Sudbury, Ontario. Can. J. Fish. aquat. Sci. 40: 621–626.

    Google Scholar 

  • Yan, N. D., W. Keller, N. M. Scully, D. R. S. Lean & P. J. Dillon, 1996. Increased UV-B penetration in a lake owing to droughtinduced acidification. Nature 381: 141–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nürnberg, G.K., Shaw, M. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382, 97–112 (1998). https://doi.org/10.1023/A:1003445406964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003445406964

Navigation