Skip to main content
Log in

Models to predict lake annual mean total phosphorus

  • Published:
Journal of Aquatic Ecosystem Health

Abstract

A lake is a product of processes in its watershed, and these relationships should be empirically quantifiable. Yet few studies have made that attempt. This study quantifies and ranks variables of significance to predict annual mean values of total phosphorus (TP) in small glacial lakes. Several new empirical models based on water chemistry variables, on ‘map parameters’ of the lake and its catchment, and combinations of such variables are presented. Each variable provides only a limited (statistical) explanation of the variation in annual mean values of TP among lakes. The models are markedly improved by accounting for the distribution of the characteristics (e.g., the mires) in the watershed. The most important map parameters were the proportion of the watershed lying close to the lake covered by rocks and open land (as determined with the drainage area zonation method), relief of the drainage area, lake area and mean depth. These empirical models can be used to predict annual mean TP but only for lakes of the same type. The model based on ‘map parameters’ (r 2=0.56) appears stable. The effects of other factors/variables not accounted for in the model (like redox-induced internal loading and anthropogenic sources) on the variation in annual mean TP may then be estimated quantitatively by residual analysis. A new mixed model (which combines a dynamic mass-balance approach with empirical knowledge) was also developed. The basic objective was to put the empirical results into a dynamic framework, thereby increasing predictive accuracy. Sensitivity tests of the mixed model indicate that it works as intended. However, comparisons against independent data for annual mean TP show that the predictive power of the mixed model is low, likely because crucial model variables, like sedimentation rate, runoff rate, diffusion rate and precipitation factor, cannot be accurately predicted. These model variables vary among lakes, but this mixed model, like most dynamic models, assumed that they are constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, I., T. Frisk & L. Kamp-Nielsen, 1988. Empirical and theoretical models of phosphorus loading, retention and concentration vs. lake trophic state. Hydrobiologia 170: 285–303.

    Google Scholar 

  • Andersson, T., Å., Nilsson, L. Håkanson & L. Brydsten, 1987. Mercury in Swedish lakes (In Swedish). SNV Report 3291, 92 pp.

  • Bierman, V.J.Jr., 1980. A comparison of models developed for phosphorus management in the Great Lakes. In: Loehr, C., Martin, C.S. and Rast, W. (eds), Phosphorus Management Strategies for Lakes pp. 235–255. Ann Arbor Science Publishers, Ann Arbor.

    Google Scholar 

  • Busch, W. -D. N. & P. G. Sly (eds), 1992. The development of an aquatic habitat classification system for lakes. CRC Press, Boca Raton.

    Google Scholar 

  • Chapra, S. C. & K. Reckhow, 1983. Engineering approaches for lake management. Vol. 2. Mechanistic modelling. Butterworth, Woburn, Mass.

    Google Scholar 

  • Dillon, P. J. & F. H. Riegler, 1974. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. J. Fish. Res. Board Can. 31: 1771–1778.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1975. A simple method for predicting the capacity of a lake for development based on lake trophic status. J. Fish. Res. Board Can. 32: 1519771–1531.

    Google Scholar 

  • Einsele, W., 1936. Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686.

    Google Scholar 

  • Einsele, W., 1937. Physikalisch-chemische Betrachtung einiger Probleme des limnischen Mangan- und Eisenkreislaufs. Verh. Int. Ver. Limnol. 5: 69–84.

    Google Scholar 

  • Einsele, W., 1938. Über chemische and kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnologischen und limnogeologischen Gesichtspunkten. Arch. Hydrobiol. 33: 361–387.

    Google Scholar 

  • Håkanson, L., 1977. The influence of wind, fetch and water depth on the distribution of sediments i Lake Vänem, Sweden. Can. J. Earth Sci. 14: 397–412.

    Google Scholar 

  • Håkanson, L., 1982. Lake bottom dynamics and morphometry — the dynamic ratio. Wat. Res. Res. 18: 1444–1450.

    Google Scholar 

  • Håkanson, L., 1991. Ecometric and dynamic modelling-exemplified by cesium in lakes after Chernobyl. Springer-Verlag, Berlin, 158 pp.

    Google Scholar 

  • Håkanson, L., 1992. Considerations on representative water quality data. Int. Rev. ges. Hydrobiol. 77: 497–505.

    Google Scholar 

  • Håkanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin, 316 pp.

    Google Scholar 

  • Håkanson, L., Å Nilsson & T. Andersson, 1988. Mercury in fish in Swedish lakes. Env. Poll. 48: 145–162.

    Google Scholar 

  • Håkanson, L., T. Andersson & Å Nilsson, 1990a. A new method of quantitatively describing drainage areas. Env. Geol. and Water Sci. 15: 61–69.

    Google Scholar 

  • Håkanson, L., H. Borg & R. Uhrberg, 1990b. Reliability of analyses of Hg, Fe, Ca, K, P, pH, alkalinity, conductivity, hardness and colour from lakes. Int. Rev. ges. Hydrobiol. 75: 79–94.

    Google Scholar 

  • Håkanson, L. & T. Andersson, 1992. Remedial measures against radioactive caesium in Swedish lake fish after Chernobyl. Aquatic Sci. 54: 141–164.

    Google Scholar 

  • Håkanson, L. & R. H. Peters, 1994. Predictive limnology — a methodological textbook for predictive modelling. Manuscript, Uppsala Univ., 765 pp.

  • Jörgensen, S. E., L. Kamp-Nielsen & L. A. Jörgensen, 1986. Examination of the generality of eutrophication models. Ecological Modelling, 32: 251–266.

    Google Scholar 

  • Lerman, A. (ed.), 1979. Lakes — it Chemistry, Geology, Physics. Springer-Verlag, Heidelberg, 363 pp.

    Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. I. J. Ecol. 29: 280–329.

    Google Scholar 

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. II. J. Ecol. 30: 147–201.

    Google Scholar 

  • Nicholls, K. H. & P. J. Dillon, 1978. An evaluation of phosphorus-chlorophyll-phytoplankton relationships for lakes. Int. Revue Ges. Hydrobiol. 63: 141–154.

    Google Scholar 

  • Nilsson, Å. & L. Håkanson, 1992. Relationship between drainage area characteristics and lake water characteristics. Env. Geol. and Water Sci. 19: 75–81.

    Google Scholar 

  • Nixon, S. W., 1990. Marine eutrophication: a growing international problem. Ambio 3: 101.

    Google Scholar 

  • Ohle, W., 1937. Kolloidgele als Nährstoffregulanten der Gewässer. Naturwissenschaften, 25: 471–474.

    Google Scholar 

  • OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris, 154 pp.

    Google Scholar 

  • Persson, G. & M. Jansson (eds), 1988. Phosphorus in Freshwater Ecosystems, Developments in Hydrobiology 48. Kluwer Academic Publishers, Dordrecht, 340 pp. Reprinted from Hydrobiologia 170.

    Google Scholar 

  • Peters, R. H., 1986. The role of prediction in limnology. Limnol. Oceanogr. 31: 1143–1159.

    Google Scholar 

  • Peters, R. H., 1991. A Critique for Ecology. Cambridge Univ. Press, Cambridge, 366 pp.

    Google Scholar 

  • Ryding, S.-O., 1983. Water quality and nutrient transport in Lake Ringsjön and its tributaries (in Swedish). Dept. of Limnology, Uppsala univ. (mimeo).

  • Schindler, D. W., 1974. Eutrophication and recovery in experimental lakes — Implications for lake management. Science 184: 897–899.

    Google Scholar 

  • Schindler, D. W., E. J. Fee & T. Ruszczynski, 1978. Phosphorus input and its consequences for phytoplankton standing crop and production in the experimental lakes area and in similar lakes. J. Fish. Res. Board Can. 35: 190–196.

    Google Scholar 

  • Straskraba, M., 1980. The effects of physical variables on fresh water production: analyses based on models. In E. D. LeCren and R. H. Lowe-McConnell (eds), The Functioning of Aquatic Ecosystems pp. 13–84. Cambridge University Press.

  • Vollenweider, R. A., 1968. The scientific basis of lake eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Tech. Rep. DAS/DSI/68.27, OECD, Paris, 159 pp.

    Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. ital. Idrobiol. 33: 53–83.

    Google Scholar 

  • Vollenweider, R. A., 1990. Eutrophication: conventional and non-conventional considerations on selected topics. In: de Bernardi, R. Giussani, G. and Barbanti, L. (eds), Scientific Perspectives in Theoretical and Applied Limnology. Memorie dell'Istituto Italiano di Idrobiologia Dott. Marco de Marchi, Vol. 47, Pallanza, 378 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Håkanson, L. Models to predict lake annual mean total phosphorus. J Aquat Ecosyst Stress Recov 4, 25–58 (1995). https://doi.org/10.1007/BF00043343

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043343

Key words

Navigation