Skip to main content
Log in

Sib mating designs for mapping quantitative trait loci

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The power to separate the variance of a quantitative trait locus (QTL) from the polygenic variance is determined by the variability of genes identical by descent (IBD) at the QTL. This variability may increase with inbreeding. Selfing, the most extreme form of inbreeding, increases the variability of the IBD value shared by siblings, and thus has a higher efficiency for QTL mapping than random mating. In self-incompatible organisms, sib mating is the closest form of inbreeding. Similar to selfing, sib mating may also increase the power of QTL detection relative to random mating. In this study, we develop an IBD-based method under sib mating designs for QTL mapping. The efficiency of sib mating is then compared with random mating. Monte Carlo simulations show that sib mating designs notably increase the power for QTL detection. When power is intermediate, the power to detect a QTL using full-sib mating is, on average, 7% higher than under random mating. In addition, the IBD-based method proposed in this paper can be used to combine data from multiple families. As a result, the estimated QTL parameters can be applied to a wide statistical inference space relating to the entire reference population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos, C.I., 1994. Robust variance-components approach for assessing genetic linkage in pedigrees. Am. J. Hum. Genet. 54: 535-543.

    PubMed  CAS  Google Scholar 

  • Beckmann, J.S. & M. Soller, 1988. Detection of linkage between marker loci and loci affecting quantitative traits in crosses between segregating populations. Theor. Appl. Genet. 76: 228-236.

    Article  Google Scholar 

  • Cockerham, C.C., 1983. Covariances of relatives from selffertilization. Crop Sci. 23: 1177-1180.

    Article  Google Scholar 

  • Fulker, D.W., S.S. Cherny & L.R. Cardon, 1995. Multipoint interval mapping of quantitative trait loci using sib pairs. Am. J. Hum. Genet. 56: 1224-1233.

    PubMed  CAS  Google Scholar 

  • Gessler, D.D.G. & S. Xu, 1996. Using the expectation or the distribution of the identity by descent for mapping quantitative trait loci under the random model. Am. J. Hum. Genet. 59: 1382-1390.

    PubMed  CAS  Google Scholar 

  • Goldgar, D.E., 1990. Multipoint analysis of human quantitative genetic variation. Am. J. Hum. Genet. 47: 957-967.

    PubMed  CAS  Google Scholar 

  • Götz, K.U. & L. Ollivier, 1992. Theoretical aspects of applying sibpair linkage to livestock species. Genet. Sel. Evol. 24: 29-42.

    Google Scholar 

  • Guo, S.W., 1994. Computation of identity-by-descent proportions shared by two siblings. Am. J. Hum. Genet. 54: 1104-1109.

    PubMed  CAS  Google Scholar 

  • Haldane, J.B.S., 1919. The combination of linkage values and the calculation of distance between the loci of linked factors. J. Genet. 8: 299-309.

    Article  Google Scholar 

  • Haley, C.S. & S.A. Knott, 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.

    PubMed  CAS  Google Scholar 

  • Haley, C.S., S.A. Knott & J.M. Elsen, 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136: 1195-1207.

    PubMed  CAS  Google Scholar 

  • Harris, D.L., 1964. Genotypic covariances between inbred relatives. Genetics 50: 1319-1348.

    PubMed  CAS  Google Scholar 

  • Haseman, J.K. & R.C. Elston, 1972. The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2: 3-19

    Article  PubMed  CAS  Google Scholar 

  • Jansen, R.C., 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205-211

    PubMed  CAS  Google Scholar 

  • Kempthorne, O., 1955. The correlation between relatives in inbred populations. Genetics 40: 681-691.

    PubMed  CAS  Google Scholar 

  • Knott, S.A., J.M. Elsen & C.S. Haley, 1996. Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor. Appl. Genet. 93: 71-80.

    Article  Google Scholar 

  • Kruglyak, L. & E.S. Lander, 1995. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am. J. Hum. Genet. 57: 439-454.

    PubMed  CAS  Google Scholar 

  • Lander, E.S. & P. Green 1987. Construction of multilocus genetic linkage maps in humans. Proc. Natl. Acad. Sci. USA 84: 2363- 2367.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.

    PubMed  CAS  Google Scholar 

  • Martínez, O. & R.N. Curnow, 1992. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl. Genet. 85: 480-488.

    Article  Google Scholar 

  • Muranty, H., 1996. Power of tests for quantitative trait loci detection using full-sib families in different schemes. Heredity 76: 156- 165.

    Google Scholar 

  • Olson, J.M., 1995. Robust multipoint linkage analysis: an extension of the Haseman-Elston method. Genet. Epidemiol. 12: 177-193.

    Article  PubMed  CAS  Google Scholar 

  • Rebai, A. & B. Goffinet, 1993. Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor. Appl. Genet. 86: 1014-1022.

    Article  Google Scholar 

  • Schork, N.J., 1993. Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations. Am. J. Hum. Genet. 53: 1306-1319.

    PubMed  CAS  Google Scholar 

  • van der Beek, S., J.A.M. van Arendonk & A.F. Groen, 1995. Power of two-and three-generation QTL mapping experiments in an outbred population containing full-sib or half-sib families. Theor. Appl. Genet. 91: 1115-1124.

    Google Scholar 

  • Wang, T., R.L. Fernando & S. van der Beek, 1995. Covariance between relatives for a marked quantitative trait locus. Genet. Sel. Evol. 27: 251-274.

    Google Scholar 

  • Weller, J.I., Y. Kashi & M. Soller, 1990. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative loci in dairy cattle. J. Dairy Sci. 73: 2525- 2537.

    Article  PubMed  CAS  Google Scholar 

  • Xie, C., D.D.G. Gessler & S. Xu, 1998. Combining Different Line Crosses for Mapping Quantitative Trait Loci Using the IBD-Based Variance Component Method. Genetics (In press)

  • Xu, S., 1996a, Mapping quantitative trait loci using four-way cross. Genet. Res. Camb. 68: 175-181.

    Google Scholar 

  • Xu, S., 1996b, Computation of the full likelihood function for estimating variance at a quantitative trait locus. Genetics 144: 1951-1960.

    PubMed  CAS  Google Scholar 

  • Xu, S. & W.R. Atchley, 1995. A random model approach to interval mapping of quantitative trait loci. Genetics 141: 1189-1197.

    PubMed  CAS  Google Scholar 

  • Xu, S. & D.D.G. Gessler, 1998. Multipoint genetic mapping of quantitative trait loci using a variable number of sibs per family. Genet. Res. Camb. (In press)

  • Zeng, Z.B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, C., Gessler, D.D. & Xu, S. Sib mating designs for mapping quantitative trait loci. Genetica 104, 9–19 (1998). https://doi.org/10.1023/A:1003220609636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003220609636

Navigation