Skip to main content
Log in

Development of Water Stress under Increased Atmospheric CO2 Concentration

  • Published:
Biologia Plantarum

Abstract

The increase in water use efficiency (the ratio of photosynthetic to transpiration rates) is likely to be the commonest positive effect of long-term elevation in CO2 concentration (CE). This may not necessarily lead to decrease in long-term water use owing to increased leaf area. However, some plant species seem to cope better with drought stress under CE, because increased production of photosynthates might enhance osmotic adjustment and decreased stomatal conductance and transpiration rate under CE enable plants to maintain a higher leaf water potential during drought. In addition, at the same stomatal conductance, internal CO2 concentration might be higher under CE which results in higher photosynthetic rate. Therefore plants under CE of the future atmosphere will probably survive eventual higher drought stress and some species may even be able to extend their biotope into less favourable sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L.H., Jr.: Carbon dioxide increase: direct impacts on crops and indirect effects mediated through anticipated climatic changes.-In: Boote, K.J., Bennett, J.M., Sinclair, T.R., Paulsen, G.M. (ed.): Physiology and Determination of Crop Yield. Pp. 425–459. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 1994.

    Google Scholar 

  • Allen, L.H., Jr., Valle, R.R., Jones, J.W., Jones P.H.: Soybean leaf water potential responses to carbon dioxide and drought.-Agron. J. 90: 375–383, 1998.

    Article  Google Scholar 

  • Allen, L.H., Jr., Valle, R.R., Mishoe, J.W., Jones, J.W.: Soybean leaf gas-exchange responses to carbon dioxide and water stress.-Agron. J. 86: 625–636, 1994.

    Article  Google Scholar 

  • Arp, W.J., Drake, B.G., Pockman, W.T., Curtis, P.S., Whigham, D.F.: Interactions between C3 and C4 salt marsh plant species during four years exposure to elevated atmospheric CO2.-Vegetatio 104/105: 133–143, 1993. Also in: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (ed.): CO2 and Biosphere. Pp. 133–143. Kluwer Academic Publishers, Dordrecht-Boston-London 1993.

    Article  Google Scholar 

  • Arp, W.J., Van Mierlo, J.E.M., Berendse, F., Snijders, W.: Interactions between elevated CO2 concentration, nitrogen and water effect on growth and water use of six perennial plant species.-Plant Cell Environ. 21: 1–11, 1998.

    Article  CAS  Google Scholar 

  • Atkinson, C.J., Taylor, J.M.: Effect of elevated CO2 on stem growth, vessel area and hydraulic conductivity of oak and cherry seedlings.-New Phytol. 133: 617–626, 1996.

    Article  Google Scholar 

  • Atkinson, C.J., Taylor, J.M. Wilkins, D., Besford, R.T.: Effect of elevated CO2 on chloroplast components, gas exchange and growth of oak and cherry.-Tree Physiol. 17: 319–325, 1997.

    PubMed  CAS  Google Scholar 

  • Baker, J.T. Allen, L.H., Jr.: Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus.-Vegetatio 104/105: 239–260, 1993. Also in: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (ed.): CO2 and Biosphere. Pp. 239–260. Kluwer Academic Publishers, Dordrecht-Boston-London 1993.

    Article  Google Scholar 

  • Baker, J.T. Allen, L.H., Jr., Boote, K.J., Pickering, N.B.: Rice responses to drought under carbon dioxide enrichment. 1. Growth and yield.-Global Change Biol. 3: 119–128, 1997.

    Article  Google Scholar 

  • Baker, J.T. Allen, L.H., Jr., Boote, K.J., Pickering, N.B.: Rice responses to drought under carbon dioxide enrichment. 2. Photosynthesis and evapotranspiration.-Global Change Biol. 3: 129–138, 1997.

    Article  Google Scholar 

  • Ball, M.C., Cochrane, M.J., Rawson, H.M.: Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2.-Plant Cell Environ. 20: 1158–1166, 1997.

    Article  Google Scholar 

  • Ball, M.C., Munns, R.: Plant responses to salinity under elevated atmospheric concentrations of CO2.-Aust. J. Bot. 40: 515–525, 1992.

    Article  CAS  Google Scholar 

  • Bazzaz, F.A.: The responses of natural ecosystems to the rising global CO2 levels.-Annu. Rev. Ecol. Syst. 21: 187–196, 1990.

    Article  Google Scholar 

  • Beerling, D.J.: Predicting leaf gas exchange and δ13C responses to the past 30 000 years of global environmental change.-New Phytol. 128: 425–433, 1994.

    Article  Google Scholar 

  • Beerling, D.J.: Carbon isotope discrimination and stomatal responses of mature Pinus sylvestris L. trees exposed in situ for three years to elevated CO2 and temperature.-Acta oecol. 18: 697–712, 1997.

    Article  Google Scholar 

  • Beerling, D.J., McElwain, J.C., Osborne, C.P.: Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations.-J. exp. Bot. 326: 1603–1607, 1998.

    Article  Google Scholar 

  • Berryman, C.A., Eamus, D., Duff, G.A.: Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment.-J. exp. Bot. 45: 539–546, 1994.

    CAS  Google Scholar 

  • Bethenod, O., Ruget, F., Combe, L.: The increase of water use efficiency of maize plant grown under elevated atmospheric CO2: an interpretation based on gas exchange of leaves.-In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. 5. Pp. 957–960. Kluwer Academic Publishers, Dordrecht-Boston-London 1995.

    Google Scholar 

  • Bettarini, I., Vaccari, F.P., Miglietta, F.: Elevated CO2 concentration and stomatal density: observations from 17 plant species growing in a CO2 spring in central Italy.-Global Change Biol. 4: 17–22, 1998.

    Article  Google Scholar 

  • Boote, K.J., Pickering, N.B., Allen, L.H., Jr.: Plant modelling: advances and gaps in our capability to predict future crop growth and yield in response to global climate change.-In: Allen, L.H., Jr., Kirkham, M.B., Olszyk, D.M., Whitman, C.E.: Advances in Carbon Dioxide Effects Research. Pp. 179–228. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 1997.

    Google Scholar 

  • Bowes, G.: Facing the inevitable: plants and increasing atmospheric CO2.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 309–332, 1993.

    Article  CAS  Google Scholar 

  • Bremer, D.J., Ham, J.M., Owensby, C.E.: Effect of elevated atmospheric carbon dioxide and open-top chambers on transpiration in a tallgrass prairie.-J. Environ. Qual. 25: 691–701, 1996.

    Article  CAS  Google Scholar 

  • Bryant, J., Taylor, G., Frehner, M.: Photosynthetic acclimation to elevated CO2 is modified by source: sink balance in three component species of chalk grassland sward grown in a free air carbon dioxide enrichment (FACE) experiment.-Plant Cell Environ. 21: 159–168, 1998.

    Article  CAS  Google Scholar 

  • Bunce, J.A.: Growth at elevated carbon dioxide concentration reduces hydraulic conductance in alfalfa and soybean.-Global Change Biol. 2: 155–158, 1996.

    Article  Google Scholar 

  • Bunce, J.A., Wilson, K.B., Carlson, T.N.: The effect of doubled CO2 on water use by alfalfa and orchard grass: simulating evapotranspiration using canopy conductance measurements.-Global Change Biol. 3: 81–87, 1997.

    Article  Google Scholar 

  • Bunce, J.A., Ziska, L.H.: Decreased hydraulic conductance in plants at elevated carbon dioxide.-Plant Cell Environ. 21: 121–126, 1998.

    Article  Google Scholar 

  • Carter, E.B., Theodorou, M.K., Morris, P.: Responses of Lotus corniculatus to environmental change.-New Phytol. 136: 245–253, 1997.

    Article  Google Scholar 

  • Casella, E., Soussana, J.F., Loiseau, P.: Long-term effect of CO2 enrichment and temperature increase on a temperate grass sward.-Plant Soil 182: 83–99, 1996.

    Article  CAS  Google Scholar 

  • Ceulemans, R., Mousseau, M.: Effects of elevated atmospheric CO2 on woody plants.-New Phytol. 127: 425–446, 1994.

    Article  Google Scholar 

  • Chaves, M.M., Pereira, J.S.: Water stress, CO2 and climate change.-J. exp. Bot. 43: 1131–1139, 1992.

    Google Scholar 

  • Chen, K., Hu, G., Keutgen, N., Blanke, M., Lenz, F.: Effect of CO2 concentration on strawberry. II. Leaf photosynthetic function.-Angew. Bot. 71: 173–178, 1997a.

    CAS  Google Scholar 

  • Chen, K., Hu, G., Keutgen, N., Lenz, F.: Effect of CO2 concentration on strawberry. III. Dry matter production and water consumption.-Angew. Bot. 71: 179–182, 1997b.

    CAS  Google Scholar 

  • Chen, K., Lenz, F.: Responses of strawberry to doubled CO2 concentration and phosphorus deficiency. II. Gas exchange and water consumption.-Gartenbauwissenschaft 62: 90–96, 1997.

    CAS  Google Scholar 

  • Clifford, S.C., Black, C.R., Roberts, J.A., Stronach, I.M., Singleton-Jones, P.R., Mohamed, A.D., Azam-Ali, S.N.: The effect of elevated atmospheric CO2 and drought on stomatal frequency in groundnut (Arachis hypogaea (L.)).-J. exp. Bot. 46: 847–852, 1995.

    CAS  Google Scholar 

  • Clifford, S.C., Stronach, M., Mohamed, A.D., Azam-Ali, S.N., Crout, N.M.J.: The effect of elevated atmospheric carbon dioxide and water stress on light interception, dry matter production and yield in stands of groundnut (Arachis hypogaea L.).-J. exp. Bot. 44: 1763–1770, 1993.

    Google Scholar 

  • Conroy, J.P., Virgona, J.M., Smillie, R.M., Barlow, E.W.: Influence of drought acclimation and CO2 enrichment on osmotic adjustment and chlorophyll a fluorescence of sunflower during drought.-Plant Physiol. 86: 1108–1115, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Csintalan, Z., Tuba, Z., Lichtenthaler, H.K., Grace, J.: Reconstitution of photosynthesis upon rehydration in the desiccated leaves of the poikilochlorophyllous shrub Xerophyta scabrida at elevated CO2.-J. Plant Physiol. 148: 345–350, 1996.

    CAS  Google Scholar 

  • Dixon, M., Le Thiec, D., Garrec, J.P.: The growth and gas exchange response of soil planted Norway spruce [Picea abies (L.) Karst.]and red oak (Quercus rubra L.) exposed to elevated CO2 and to naturally occurring drought.-New Phytol. 129: 265–273, 1995.

    Article  Google Scholar 

  • Drake, B.G., Gonzàlez-Meler, M.A., Long, S.P.: More efficient plants: a consequence of rising atmospheric CO2?-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 609–639, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Dugas, W.A., Heuer, M.L., Hunsaker, D., Kimball, B.A., Lewin, K.F., Nagy, J., Johnson, M.: Sap flow measurements of transpiration from cotton grown under ambient and enriched CO2 concentration.-Agr. Forest Meteorol. 70: 231–245, 1994.

    Article  Google Scholar 

  • Duquesnay, A., Breda, N., Stievenard, M., Dupoucy, J.L.: Changes in tree ring delta C-13 and water-use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century.-Plant Cell Environ. 21: 565–572, 1998.

    Article  Google Scholar 

  • Eamus, D.: The interaction of rising CO2 and temperatures with water use efficiency.-Plant Cell Environ. 14: 843–852, 1991.

    Article  Google Scholar 

  • Faria, T., Cerasoli, S., Garcia-Plazaola, J.I., Guimarães, M.P., Abadia, A., Raschi, A., Miglietta, F.: Photochemical responses to summer drought in Quercus ilex trees growing in a naturally CO2 enriched site.-In: Mohren, G.M.J., Kramer, K., Sabaté, S. (ed.): Impacts of Global Change on Tree Physiology and Forest Ecosystems. Pp. 119–124. Kluwer Academic Publishers, Dordrecht-Boston-London 1997.

    Google Scholar 

  • Farta, T., Wilkins, D., Besford, R.T., Vaz, M., Pereira, J.S., Chaves, M.M.: Growth at elevated CO2 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L. seedlings.-J. exp. Bot. 47: 1755–1761, 1996.

    Google Scholar 

  • Fernández, M.D., Pieters, A., Donoso, C., Tezara, W., Azkue, M., Herrera, C., Rengifo, E., Herrera, A.: Effect of a natural source of very high CO2 concentration on the leaf gas exchange, xylem water potential and stomatal characteristics of plants of Spathiphyllum cannifolium and Bauhinia multinervia.-New Phytol. 138: 689–697, 1998.

    Article  Google Scholar 

  • Ferris, R., Nijs, I., Behaeghe, T., Impens, I.: Contrasting CO2 and temperature effects on leaf growth of perennial ryegrass in spring and summer.-J. exp. Bot. 47: 1033–1043, 1996.

    CAS  Google Scholar 

  • Ferris, R., Taylor, G.: Increased root growth in elevated CO2: a biophysical analysis of root cell elongation.-J. exp. Bot. 45: 1603–1612, 1994.

    CAS  Google Scholar 

  • Ferris, R., Taylor, G.: Contrasting effects of elevated CO2 and water deficit on two native herbs. New Phytol. 131: 491–501, 1995.

    Article  Google Scholar 

  • Ferris, R., Wheeler, T.R., Hadley, P., Ellis, R.H.: Recovery of photosynthesis after environmental stress in soybean grown under elevated CO2.-Crop. Sci. 38: 948–955, 1998.

    Article  Google Scholar 

  • Field, C.: The changing carbon cycle, from the leaf to the globe.-Carnegie Inst. Year Book 95: 106–112, 1995.

    Google Scholar 

  • Fiscus, E.L., Reid, C.D., Miller, J.E., Heagle, A.S.: Elevated CO2 reduces O3 flux and O3-induced yield losses in soybeans: possible implications for elevated CO2 studies.-J. exp. Bot. 48: 307–313, 1997.

    CAS  Google Scholar 

  • Fredeen, A.L., Koch, G.W., Field, C.B.: Influence of fertilization and atmospheric CO2 enrichment on ecosystem CO2 and H2O exchanges in single-and multiple-species grassland microcosms.-Environ. exp. Bot. 40: 147–157, 1998.

    Article  Google Scholar 

  • Garcia, R.L., Long, S.P., Wall, G.W., Osborne, C.P., Kimball, B.A., Nic, G.Y., Pinter, P.J., Jr., LaMorte, R.L., Wechsung, F.: Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO2 enrichment.-Plant Cell Environ. 21: 659–669, 1998.

    Article  Google Scholar 

  • Gislerod, H.R., Nelson, P.V.: The interaction of relative air humidity and carbon dioxide enrichment in the growth of Chrysanthemum x morifolium Ramat.-Scientia Hort. 38: 305–313, 1989.

    Article  Google Scholar 

  • Goodfellow, J., Eamus, D., Duff, G.: Diurnal and seasonal changes in the impact of CO2 enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wet-dry tropics of Australia.-Tree Physiol. 17: 291–299, 1997.

    PubMed  Google Scholar 

  • Gorissen, A., Kuikman, P.J., Van de Beck, H.: Carbon allocation and water use in juvenile Douglas fir under elevated CO2.-New Phytol. 129: 275–282, 1995.

    Article  Google Scholar 

  • Grant, R.F., Garcia, R.L., Pinter, P.J., Hunsaker, D., Wall, G.W., Kimball, B.A., LaMorte, R.L.: Interaction between atmospheric CO2 concentration and water deficit on gas exchange and crop growth: testing of ecosys with data from the Free Air CO2 Enrichment (FACE) experiment.-Global Change Biol. 1: 443–454, 1995.

    Article  Google Scholar 

  • Groninger, J.W., Seiler, J.R., Zedaker, S.M., Berrang, P.C.: Effects of CO2 concentration and water availability on growth and gas exchange in greenhouse-grown miniature stands of loblolly pine and red maple.-Funct. Ecol. 10: 708–716, 1996.

    Article  Google Scholar 

  • Guehl, J.M., Picon, C., Aussenae, G., Gross, P.: Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species.-Tree Physiol. 14: 707–724, 1994.

    PubMed  Google Scholar 

  • Ham, J.M., Owensby, C.E., Coyne, P.I., Bremer, D.J.: Fluxes of CO2 and water vapor from a prairie ecosystem exposed to ambient and elevated atmospheric CO2.-Agr. Forest Meteorol. 77: 73–93, 1995.

    Article  Google Scholar 

  • Hamerlynck, E.P., McAllister, C.A., Knapp, A.K., Ham, J.M., Owensby, C.E.: Photosynthetic gas exchange and water relation responses of three tallgrass prairie species to elevated carbon dioxide and moderate drought.-Int. J. Plant Sci. 158: 608–616, 1997.

    Article  Google Scholar 

  • Heath, J.: Stomata of trees growing in CO2-enriched air show reduced sensitivity to vapour pressure deficit and drought.-Plant Cell Environ. 21: 1077–1088, 1998.

    Article  Google Scholar 

  • Heath, J., Kerstiens, G.: Effect of elevated CO2 on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech.-Plant Cell Environ. 20: 57–67, 1997a.

    Article  Google Scholar 

  • Heath, J., Kerstiens G., Tyree, M.T.: Stem hydraulic conductance of European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) grown in elevated CO2.-J. exp. Bot. 48: 1487–1489, 1997.

    CAS  Google Scholar 

  • Hogan, K.P., Smith, A.P., Ziska, L.H.: Potential effects of elevated CO2 and changes in temperature on tropical plants.-Plant Cell Environ. 14: 763–778, 1991.

    Article  Google Scholar 

  • Hunsaker, D.J., Kimball, B.A., Pinter, P.J., Jr, LaMorte, R.L., Wall, G.W.: Carbon dioxide enrichment and irrigation effects on wheat evapotranspiration and water use efficiency.-Trans. ASAE 39: 1345–1355, 1996.

    Google Scholar 

  • Huxman, T.E., Hamerlynck, E.P., Moore, B.D., Smith, S.D., Jordan, D.N., Zitzer, S.F., Nowak, R.S., Coleman, J.S., Seeman, J.R.: Photosynthetic down-regulation in Larrea tridentata exposed to elevated atmospheric CO2: interaction with drought under glasshouse and field (FACE) exposure.-Plant Cell Environ. 21: 1153–1161, 1998.

    Article  Google Scholar 

  • Jarvis, P.G.: Global change and plant water relations.-In: Borghetti, M., Grace, J., Raschi, A. (ed.) Water Transport in Plants under Climatic Stress. Pp. 1–13. Cambridge University Press, Cambridge 1993.

    Google Scholar 

  • Jones, M.B., Jongen, M.: Sensitivity of temperate grassland species to elevated atmospheric CO2 and the interaction with temperature and water stress.-Agr. Food Sci. Finland 5: 271–283, 1996.

    Google Scholar 

  • Jones, P., Allen, L.H., Jr., Jones, J.W., Valle, R.: Photosynthesis and transpiration responses of soybean canopies to short-and long-term CO2 treatments.-Agron. J. 77: 119–126, 1985a.

    Article  CAS  Google Scholar 

  • Jones, P., Jones, J.W., Allen, L.H., Jr.: Carbon dioxide effects on photosynthesis and transpiration during vegetative growth in soybeans.-Soil Crop Sci. Soc. Proc. 44: 129–134, 1985b.

    Google Scholar 

  • Kellomäki, S, Wang, K.-Y.: Photosynthetic responses of Scots pine to elevated CO2 and nitrogen supply: results of a branch-in-bag experiment.-Tree Physiol. 17: 231–240, 1997a.

    PubMed  Google Scholar 

  • Kellomäki, S. Wang, K.-Y.: Effects of elevated O3 and CO2 concentrations on photosynthesis and stomatal conductance in Scots pine.-Plant Cell Environ. 20: 995–1006, 1997b.

    Article  Google Scholar 

  • Kellomäki, S. Wang, K. Y.: Sap flow in Scots pines growing under conditions of year round carbon dioxide enrichment and temperature elevation.-Plant Cell Environ. 21: 969–981, 1998.

    Article  Google Scholar 

  • Knapp, A.K., Hamerlynck, E.P., Ham, J.M., Owensby, C.E.: Responses in stomatal conductance of elevated CO2 in 12 grassland species that differ in growth form.-Vegetatio 125: 31–41, 1996.

    Article  Google Scholar 

  • Knapp, A.K., Hamerlynck, E.P., Owensby, C.E.: Photosynthetic and water relations responses to elevated CO2 in the C4 grass Andropogon gerardii.-Int. J. Plant Sci. 154: 459–466, 1993.

    Article  CAS  Google Scholar 

  • Lauber, W., Körner, C.: In situ stomatal responses to long-term CO2 enrichment in calcareous grassland plants.-Acta oecol. 18: 221–229, 1997

    Article  Google Scholar 

  • Lawlor, D.W., Mitchell, A.C.: The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies.-Plant Cell Environ. 14: 807–818, 1991.

    Article  Google Scholar 

  • Le Thiec, D., Dixon, M.: Acclimation of photosynthesis in Norway spruce and red oak grown in open-top chambers and subjected to natural drought and to elevated CO2.-Can. J. Forest Res. 26: 87–94, 1996.

    Google Scholar 

  • Liang, N., Maruyama, K.: Interactive effects of CO2 enrichment and drought stress on gas exchange and water use efficiency in Alnus firma.-Environ. exp. Bot. 35: 353–361, 1995.

    Article  Google Scholar 

  • López, B., Sabaté, S., Ruiz, I., Gracia, C.: Effects of elevated CO2 and decreased water availability on holm-oak seedlings in controlled environmental chambers.-In: Mohren, G.M.J., Kramer, K., Sabaté, S. (ed.): Impacts of Global Change on Tree Physiology and Forest Ecosystems. Pp. 125–133. Kluwer Academic Publishers, Dordrecht-Boston-London 1997.

    Google Scholar 

  • Lutze, J.L., Gifford, R.M.: Carbon storage and productivity of a carbon dioxide enriched nitrogen limited grass sward after one year's growth.-J. Biogeogr. 22: 227–233, 1995.

    Article  Google Scholar 

  • Mackowiak, C.L., Wheeler, R.M.: Growth and stomatal behavior of hydroponically cultured potato (Solanum tuberosum L.) at elevated and super-elevated CO2.-J Plant Physiol. 149: 205–210, 1996.

    CAS  Google Scholar 

  • Morgan, J.A., Knight, W.G., Dudley, L.M., Hunt, H.W.: Enhanced root system C-sink activity, water relations and aspects of nutrient acquisition in mycotropic Bouteloua gracilis subjected to CO2 enrichment.-Plant Soil 165: 139–146, 1994.

    CAS  Google Scholar 

  • Morgan, J.A., Le Cain, D.R., Read, J.J., Hunt, H.W., Knight, W.G.: Photosynthetic pathway and ontogeny affect water relations and the impact of CO2 on Bouteloua gracilis (C4) and Pascopyrum smithii (C3).-Oecologia 114: 483–493, 1998.

    Article  Google Scholar 

  • Morison, J.I.L.: Intercellular CO2 concentration and stomatal response to CO2.-In: Zeiger, E., Farquhar, G.D., Cowan, I.R. (ed.): Stomatal Function. Pp. 229–251. Stanford University Press, Stanford 1987.

    Google Scholar 

  • Morison, J.I.L.: Response of plants to CO2 under water limited conditions.-Vegetatio 104/105: 193–209, 1993. Also in: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (ed.): CO2 and Biosphere. Pp. 193–209. Kluwer Academic Publishers, Dordrecht-Boston-London 1993.

    Article  Google Scholar 

  • Morse, S.R., Wayne, P., Miao, S.L., Bazzaz, F.A.: Elevated CO2 and drought alter tissue water relations of birch (Betula populifolia Marsh.) seedlings.-Oecologia 95: 599–602, 1993.

    Google Scholar 

  • Mortensen, L.V.: Effect of carbon dioxide concentration on assimilate partitioning, photosynthesis and transpiration of Betula pendula Roth. and Picea abies (L.) Karst. seedlings at two temperatures.-Acta Agr. scand. Sect. B Soil Plant Sci. 44: 164–169, 1994.

    Google Scholar 

  • Mott, K.A.: Sensing of atmospheric CO2 by plants.-Plant Cell Environ. 13: 731–737, 1990.

    Article  CAS  Google Scholar 

  • Murray, D.R.: Carbon Dioxide and Plant Responses.-Research Studies Press, Taunton-Somerset; John Wiley & Sons, New York-Chichester-Toronto-Brisbane-Singapore 1997.

    Google Scholar 

  • Owensby, C.E., Ham, J.M., Knapp, A.K., Bremer, D., Auen, L.M.: Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie.-Global Change Biol. 3: 189–195, 1997.

    Article  Google Scholar 

  • Paoletti, E., Nourrisson, G., Garrec, J.P., Raschi, A.: Modification of the leaf surface structures of Quercus ilex L. in open, naturally CO2-enriched environments.-Plant Cell Environ. 21: 1071–1075, 1998.

    Article  Google Scholar 

  • Pearson, M., Davies, W.J., Mansfield, T.A.: Asymmetric responses of adaxial and abaxial stomata to elevated CO2: impacts on the control of gas exchange by leaves.-Plant Cell Environ. 118: 837–843, 1995.

    Article  Google Scholar 

  • Picon, C., Ferhi, A., Guehl, J.M.: Concentration and δ13C of leaf carbohydrates in relation to gas exchange in Quercus robur under elevated CO2 and drought.-J. exp. Bot. 48: 1547–1556, 1997.

    Article  CAS  Google Scholar 

  • Picon, C., Guehl, J.M., Aussenac, G.: Growth dynamics, transpiration and water-use efficiency in Quercus robur plants submitted to elevated CO2 and drought.-Ann. Sci. Forest. 53: 431–446, 1996a.

    Google Scholar 

  • Picon, C., Guehl, J.M., Ferhi, A.: Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (Pinus pinaster) and a drought-tolerant (Quercus petraea) species under present and elevated atmospheric CO2 concentrations.-Plant Cell Environ. 19: 182–190, 1996b.

    Article  Google Scholar 

  • Polley, H.W., Johnson, H.B., Mayeux, H.S.: Leaf physiology, production, water use, and nitrogen dynamics of the grassland invader Acacia smallii at elevated CO2 concentrations.-Tree Physiol. 17: 89–96, 1997.

    PubMed  Google Scholar 

  • Polley, H.W., Johnson, H.B., Mayeux, H.S., Brown, D.A., White, J.W.C.: Leaf and plant water use efficiency of C4 species grown at glacial to elevated CO2 concentrations.-Int. J. Plant Sci. 157: 164–170, 1996.

    Article  CAS  Google Scholar 

  • Polley, H.W., Johnson, H.B., Mayeux, H.S., Tischler, C.R., Brown, D.A.: Carbon dioxide enrichment improves growth, water relations and survival of droughted honey mesquite (Prosopis glandulosa) seedlings.-Tree Physiol. 16: 817–823, 1996.

    PubMed  Google Scholar 

  • Pospíšilová, J., Čatský, J.: Effect of increased atmospheric CO2 concentration on water use efficiency of plants.-In: Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. 2nd Ed. Marcel Dekker, New York 1999 (in press).

    Google Scholar 

  • Rabha, B.K., Uprety, D.C.: Effects of elevated CO2 and moisture stress on Brassica juncea.-Photosynthetica 35: 597–602, 1998.

    Article  Google Scholar 

  • Radoglou, K.M., Aphalo, P., Jarvis, P.G.: Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2 and nutrient supply in acclimated seedlings of Phaseolus vulgaris L.-Ann. Bot. 70: 257–264, 1992.

    CAS  Google Scholar 

  • Ranasinghe, S., Taylor, G.: Mechanism for increased leaf growth in elevated CO2.-J. exp. Bot. 47: 349–358, 1996.

    CAS  Google Scholar 

  • Reining, E.: Acclimation of C3 photosynthesis to elevated CO2: hypotheses and experimental evidence.-Photosynthetica 30: 519–525, 1994.

    CAS  Google Scholar 

  • Retuerto, R., Woodward, F.I.: The influence of increased CO2 and water supply on growth, biomass allocation and water use efficiency of Sinapis alba L. grown under different wind speeds.-Oecologia 94: 415–427, 1993.

    Article  Google Scholar 

  • Rey, A., Jarvis, P.G.: Long-term photosynthetic acclimation to increased atmospheric CO2 concentration in young birch (Betula pendula) trees.-Tree Physiol. 18: 441–450, 1998.

    PubMed  CAS  Google Scholar 

  • Roden, J.S., Ball, M.C.: The effect of elevated [CO2]on growth and photosynthesis of two Eucalyptus species exposed to high temperatures and water deficit. Plant Physiol. 111: 909–919, 1996.

    PubMed  CAS  Google Scholar 

  • Rozema, J.: Plant responses to atmospheric carbon dioxide enrichment: interactions with some soil and atmospheric conditions.-Vegetatio 104/105: 173–190, 1993. In: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (ed.): CO2 and Biosphere. Pp. 173–190. Kluwer Academic Publishers, Dordrecht-Boston-London 1993.

    Article  Google Scholar 

  • Ryle, G.J.A., Woledge, J., Tewson, V., Powell, C.E.: Influence of elevated CO2 and temperature on the photosynthesis and respiration of white clover dependent on N2 fixation.-Ann. Bot. 70: 213–220, 1992.

    CAS  Google Scholar 

  • Sage, R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective.-Photosynth. Res. 39: 351–368, 1994.

    Article  CAS  Google Scholar 

  • Sage, R.F., Reid, C.D.: Photosynthetic response mechanisms to environmental changes in C3 plants. In: Wilkinson, R.E. (ed.): Plant-Environment Interactions. Pp. 413–499. Marcel Dekker, New York-Basel-Hong Kong 1994.

    Google Scholar 

  • Samarakoon, A.B., Gifford, R.M.: Soil water content under plants at high CO2 concentration and interaction with the direct CO2 effects: a species comparison.-J. Biogeogr. 22: 193–202, 1995.

    Article  Google Scholar 

  • Samarakoon, A.B., Gifford, R.M.: Elevated CO2 effects on water use and growth of maize in wet and drying soil.-Aust. J. Plant Physiol. 23: 53–62, 1996a.

    Article  CAS  Google Scholar 

  • Samarakoon, A.B., Gifford, R.M.: Water use and growth of cotton in response to elevated CO2 in wet and drying soil.-Aust. J. Plant Physiol. 23: 63–74, 1996b.

    CAS  Google Scholar 

  • Samarakoon, A.B., Müller, W.J., Gifford, R.M.: Transpiration and leaf area under elevated CO2: effects of soil water status and genotype in wheat.-Aust. J. Plant Physiol. 22: 33–44, 1995.

    Google Scholar 

  • Samuelson, L.J., Seiler, J.R.: Fraser fir seedling gas exchange and growth in response to elevated CO2.-Environ. exp. Bot. 32: 351–356, 1992.

    Article  CAS  Google Scholar 

  • Samuelson, L.J., Seiler, J.R.: Red spruce seedling gas exchange in response to elevated CO2, water stress, and soil fertility treatments.-Can. J. Forest Res. 24: 954–959, 1994.

    Google Scholar 

  • Šantrüček, J., Sage, R.F.: Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album.-Aust. J. Plant Physiol. 23: 467–478, 1996.

    Google Scholar 

  • Saralabai, V.C., Vivekandan, M., Suresh Babu, R.: Plant responses to high CO2 concentration in the atmosphere.-Photosynthetica 33: 7–37, 1997.

    Article  CAS  Google Scholar 

  • Scarascia-Mugnozza, G., De Angelis, P., Matteucci, G., Valentini, R.: Long-term exposure to elevated [CO2]in a natural Quercus ilex L. community: net photosynthesis and photochemical efficiency of PSII at different levels of water stress.-Plant Cell Environ. 19: 643–654, 1996.

    Article  CAS  Google Scholar 

  • Schapendonk, A.H.C.M., Dijkstra, P., Groenwold, J., Pot, C.S., Van de Geijn, S.C.: Carbon balance and water-use efficiency of frequently cut Lolium perenne L. swards at elevated carbon dioxide.-Global Change Biol. 3: 207–216, 1997.

    Article  Google Scholar 

  • Schulte, M., Herschbach, C., Rennenberg, H.: Interactive effects of elevated atmospheric CO2, mycorrhization and drought on long-distance transport of reduced sulphur in young pedunculate oak trees (Quercus robur L.).-Plant Cell Environ. 21: 917–926, 1998.

    Article  CAS  Google Scholar 

  • Seneweera, S.P., Ghannoum, O., Conroy, J.: High vapour pressure deficit and low soil water availability enhance shoot growth responses of a C4 grass (Panicum odoratum cv. Bambatsi) to CO2 enrichment.-Aust. J. Plant Physiol. 25: 287–292, 1998.

    Google Scholar 

  • Senock, R.S., Ham, J.M., Loughin, T.M., Kimball, B.A., Hunsaker, D.J., Pinter, P.J., Wall, G.W., Garcia, R.L., LaMorte, R.L.: Sap flow in wheat under free-air CO2 enrichment.-Plant Cell Environ. 19: 147–158, 1996.

    Article  Google Scholar 

  • Sgherri, C.L.M., Quartacci, M.F., Menconi, M., Raschi, A., Navarri-Izzo, F.: Interactions between drought and elevated CO2 on alfalfa plants.-J. Plant Physiol. 152: 118–124, 1998.

    CAS  Google Scholar 

  • Sharkey, T.D.: Feedback effects on photosynthesis induced by assay and growth at high carbon dioxide.-In: Boote, K.J., Bennett, J.M., Sinclair, T.R., Paulsen, G.M. (ed.): Physiology and Determination of Crop Yield. Pp. 461–466. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 1994.

    Google Scholar 

  • Sicher, R.C.: Yellowing and photosynthetic decline of barley primary leaves in response to atmospheric CO2 enrichment.-Physiol. Plant. 103: 193–200, 1998.

    Article  CAS  Google Scholar 

  • Stulen, I., den Herfog, J.: Root growth and functioning under atmospheric CO2 enrichment.-Vegetatio 104/105: 99–115, 1993. Also in: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (ed.): CO2 and Biosphere. Pp. 99–115. Kluwer Academic Publishers, Dordrecht-Boston-London 1993.

    Article  Google Scholar 

  • Szente, K., Nagy, Z., Tuba, Z.: Enhanced water use efficiency in dry loess grassland species grown at elevated air CO2 concentration.-Photosynthetica 35: 637–640, 1998.

    Article  Google Scholar 

  • Tissue, D.T., Thomas, R.B., Strain, B.R.: Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: a 4 year experiment in the field.-Plant Cell Environ. 20: 1123–1134, 1997.

    Article  Google Scholar 

  • Tjoelker, M.G., Oleksyn, J., Reich, P.B.: Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated CO2 and temperature.-Tree Physiol. 18: 715–726, 1998.

    PubMed  Google Scholar 

  • Tognetti, R., Giovannelli, A., Longobucco, A., Miglietta, F., Raschi, A.: Water relations of oak species growing in the natural CO2 spring of Rapolano (central Italy)-Ann Sci. forest. 53: 475–485, 1996.

    Google Scholar 

  • Tognetti, R., Johnson, J.D., Michelozzi, M., Raschi, A.: Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2.-Environ. exp. Bot. 39: 233–245, 1998a.

    Article  CAS  Google Scholar 

  • Tognetti, R., Longobucco, A., Miglietta, F., Raschi, A.: Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring.-Plant Cell Environ. 21: 613–622, 1998b.

    Article  Google Scholar 

  • Townend, J.: Effects of elevated carbon dioxide and drought on the growth and physiology of clonal Sitka spruce plants (Picea sitchensis (Bong.) Carr.).-Tree Physiol. 13: 389–399, 1993.

    PubMed  CAS  Google Scholar 

  • Townend, J.: Effects of elevated CO2, water and nutrients on Picea sitchensis (Bong.) Carr.-New Phytol. 130: 193–206, 1995.

    Article  CAS  Google Scholar 

  • Tschaplinski, T.J., Norby, R.J., Wullschleger, S.D.: Responses of loblolly pine seedlings to elevated CO2 and fluctuating water supply.-Tree Physiol. 13: 283–296, 1993.

    PubMed  CAS  Google Scholar 

  • Tschaplinski, T.J., Stewart, D.B., Hanson, P.J., Norby, R.J.: Interactions between drought and elevated CO2 on growth and gas exchange of seedlings of three deciduous tree species.-New Phytol. 129: 63–71, 1995.

    Article  Google Scholar 

  • Tschaplinski, T.J., Stewart, D.B., Norby, R.J.: Interactions between drought and elevated CO2 on osmotic adjustment and solute concentrations of tree seedlings.-New Phytol 131: 169–177, 1995.

    Article  Google Scholar 

  • Tuba, Z., Szente, K., Nagy, Z., Csintalan, Z., Koch, J.: Responses of CO2 assimilation, transpiration and water use efficiency to long-term elevated CO2 in perennial C3 xeric loess steppe species.-J. Plant Physiol. 148: 356–361, 1996.

    CAS  Google Scholar 

  • Tyree, M.T., Alexander, J.D.: Plant water relations and the effects of elevated CO2: a review and suggestions for future research.-Vegetatio 104/105: 47–62, 1993. Also in: Rozema, J., Lambers, H., Van de Geijn, S.C., Cambridge, M.L. (ed.): CO2 and Biosphere. Pp. 47–62. Kluwer Academic Publishers, Dordrecht-Boston-London 1993.

    Article  Google Scholar 

  • Uprety, D.C., Rabha, B.K.: Effect of elevated CO2 and moisture stress on the carbon and nitrogen content in Brassica juncea.-Biol. Plant. 42: 133–136, 1999.

    Article  Google Scholar 

  • Van Vuuren, M.M.I., Robinson, D., Fitter, A.H., Chasalow, S.D., Williamson, L., Raven, J.A.: Effects of elevated CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat.-New Phytol. 135: 455–465, 1997.

    Article  Google Scholar 

  • Vivin, P., Guehl, J.M.: Changes in carbon uptake and allocation patterns in Quercus robur seedlings in response to elevated CO2 and water stress: an evaluation with 13C labelling.-Ann. Sci. forest. 54: 597–610, 1997.

    Google Scholar 

  • Vivin, P., Guehl, J.M., Clément, A., Aussenac, G.: The effects of elevated CO2 and water stress on whole plant CO2 exchange, carbon allocation and osmoregulation in oak seedlings.-Ann. Sci. forest. 53: 447–459, 1996.

    Google Scholar 

  • Vu, J.C.V., Baker, J.T., Pennanen, A.H., Allen, L.H., Jr., Bowes, G., Boote, K.J.: Elevated CO2 and water deficit effects of photosynthesis, ribulose bisphosphate carboxylase-oxygenase, and carbohydrate metabolism in rice.-Physiol. Plant. 103: 327–339, 1998.

    Article  CAS  Google Scholar 

  • Wang, K.-Y., Kellomäki, S.: Stomatal conductance and transpiration in shoots of Scots pine after 4–year exposure to elevated CO2 and temperature.-Can. J. Bot. 75: 552–561, 1997.

    Google Scholar 

  • Wheeler, R.M., Mackowiak, C.L., Siegriest, L.M., Sager, J.C.: Supraoptimal carbon dioxide effects on growth of soybean [Glycine max (L.) Merr.].-J. Plant Physiol. 142: 173–178, 1993.

    PubMed  CAS  Google Scholar 

  • Will, R.E., Teskey, R.O.: Effect of irradiance and vapour pressure deficit on stomatal response to CO2 enrichment of four tree species.-J. exp. Bot. 48: 2095–2102, 1997.

    CAS  Google Scholar 

  • Wilson, K.B., Bunce, J.A.: Effects of carbon dioxide concentration on the interactive effects of temperature and water vapour on stomatal conductance in soybean.-Plant Cell Environ. 20: 230–238, 1997.

    Article  Google Scholar 

  • Woodward, F.I.: Stomata numbers are sensitive to increases in CO2 from preindustrial levels.-Nature 327: 617–618, 1987.

    Article  Google Scholar 

  • Woodward, F.I., Bazzaz, F.A.: The response of stomatal density to CO2 partial pressure.-J. exp. Bot. 39: 1771–1781, 1988.

    Google Scholar 

  • Woodward, F.I., Kelly, C.K.: The influence of CO2 concentration on stomatal density.-New Phytol. 131: 311–327, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pospíšilová, J., Čatský, J. Development of Water Stress under Increased Atmospheric CO2 Concentration. Biologia Plantarum 42, 1–24 (1999). https://doi.org/10.1023/A:1002102405980

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002102405980

Navigation