Skip to main content
Log in

A LIMITED-LENGTH-SCALE k-ε MODEL FOR THE NEUTRAL AND STABLY-STRATIFIED ATMOSPHERIC BOUNDARY LAYER

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Analytical and numerical models of the neutral and stably-stratifiedatmospheric boundary layer are reviewed. Theoretical arguments andcomputational models suggest that a quasi-steady state is attainable in aboundary layer cooled from below and it is shown how this may be incorporatedwithin a time-steady, one-dimensional model. A new length-scale-limitedk-ε model is proposed for flows where a global maximum mixing length isimposed by the finite boundary-layer depth or, in stably-stratifiedconditions, by the Obukhov length, whilst still reducing to a form consistentwith the logarithmic law in the surface layer. Simulations compare favourablywith data from the Leipzig experiment and from Cardington airfield inEngland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apsley, D. D.: 1995, ‘Numerical Modelling of Neutral and Stably-Stratified Flow and Dispersion in Complex Terrain’, Ph.D. Thesis, University of Surrey, England.

  • Arya, S. P. S.: 1982, ‘Atmospheric Boundary Layers Over Homogeneous Terrain’, in E. Plate (ed.), Engineering Meteorology, Chapter 6, Elsevier Publishing, pp. 233–268.

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere’, J. Geophys. Res. 97, 3095–3102.

    Google Scholar 

  • Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably-Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427–1440.

    Google Scholar 

  • Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: 1990, ‘Direct Simulation of the Turbulent Ekman layer’, J. Fluid Mech. 213, 313–348.

    Google Scholar 

  • Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: 1992, ‘Direct Simulation of the Stably Stratified Turbulent Ekman Layer’, J. Fluid Mech. 244, 677–712.

    Google Scholar 

  • Derbyshire, S. H.: 1990, ‘Nieuwstadt's Stable Boundary Layer Revisited’, Quart. J. Roy. Meteorol. Soc. 116, 127–158.

    Google Scholar 

  • Detering, H. W. and Etling, D.: 1985, ‘Application of the E-" Turbulence Model to the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 33, 113–133.

    Google Scholar 

  • Duynkerke, P. G.: 1988, ‘Application of the E-" Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer’, J. Atmos. Sci. 45, 865–880.

    Google Scholar 

  • Holt, T. and Raman, S.: 1988, ‘A Review and Comparative Evaluation of Multilevel Boundary-Layer Parameterisations for First-Order and Turbulent Kinetic Energy Closure Schemes’, Rev. Geophys. 26, 761–780.

    Google Scholar 

  • Holtslag, A. A. M. and Nieuwstadt, F. T. M.: 1986, ‘Scaling the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 36, 201–209.

    Google Scholar 

  • Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in Stable Layers’, Quart. J. Roy. Meteorol. Soc. 111, 793–815.

    Google Scholar 

  • Launder, B. E. and Spalding, D. B.: 1974, ‘The Numerical Computation of Turbulent Flows’, Comp. Meth. Appl. Mech. Engineer. 3, 269–289.

    Google Scholar 

  • Mason, P. J.: 1989, ‘Large-Eddy Simulation of the Convective Atmospheric Boundary Layer’, J. Atmos. Sci. 46, 1492–1516.

    Google Scholar 

  • Mason, P. J. and Derbyshire, S.H.: 1990, ‘Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer’, Boundary-layer Meteorol. 53, 117–162.

    Google Scholar 

  • Mason, P. J. and Thomson, D. J.: 1987, ‘Large-Eddy Simulation of the Neutral-Static-Stability Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 113, 413–443.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geophys. Space Phys. 20, 851–875.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2202–2216.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1985, ‘AModel for the Stationary, StableBoundary Layer’, in J.C.R. Hunt (ed.), Proc. of IMA Conference on Turbulence and Diffusion in the Stable Environment, Cambridge, 1983, Clarendon Press, pp. 149–179.

  • Rodi, W.: 1987, ‘Examples of Calculation Methods for Flow and Mixing in Stratified Fluids’, J. Geophys. Res. 92, 5305–5328.

    Google Scholar 

  • Wyngaard, J. C.: 1975, ‘Modelling the Planetary Boundary Layer-Extension to the Stable Case’, Boundary-Layer Meteorol. 9, 441–460.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1974, ‘The Evolution of a Convective Planetary Boundary Layer-A Higher-Order-Closure Model Study’, Boundary-Layer Meteorol. 7, 289–308.

    Google Scholar 

  • Wyngaard, J. C., Cote, O. R., and Rao, K. S.: 1974, ‘Modelling the Atmospheric Boundary Layer’, in Advances in Geophysics, Vol. 18A, Academic Press, pp. 193–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

APSLEY, D.D., CASTRO, I.P. A LIMITED-LENGTH-SCALE k-ε MODEL FOR THE NEUTRAL AND STABLY-STRATIFIED ATMOSPHERIC BOUNDARY LAYER. Boundary-Layer Meteorology 83, 75–98 (1997). https://doi.org/10.1023/A:1000252210512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000252210512

Navigation