Skip to main content
Log in

Large-Eddy Simulation of Thermally Stratified Atmospheric Boundary-Layer Flow Using a Minimum Dissipation Model

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A generalized form of a recently developed minimum dissipation model for subfilter turbulent fluxes is proposed and implemented in the simulation of thermally stratified atmospheric boundary-layer flows. Compared with the original model, the generalized model includes the contribution of buoyant forces, in addition to shear, to the production or suppression of turbulence, with a number of desirable practical and theoretical properties. Specifically, the model has a low computational complexity, appropriately switches off in laminar and transitional flows, does not require any ad hoc shear and stability corrections, and is consistent with theoretical subfilter turbulent fluxes. The simulation results show remarkable agreement with well-established empirical correlations, theoretical predictions, and field observations in the atmosphere. In addition, the results show very little sensitivity to the grid resolution, demonstrating the robustness of the model in the simulation of the atmospheric boundary layer, even with relatively coarse resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abkar M, Bae H, Moin P (2016) Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows. Phys Rev Fluids 1(4):041701

    Article  Google Scholar 

  • Antonopoulos-Domis M (1981) Large-eddy simulation of a passive scalar in isotropic turbulence. J Fluid Mech 104:55–79

    Article  Google Scholar 

  • Basu S, Porté-Agel F (2006) Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach. J Atmos Sci 63:2074–2091

    Article  Google Scholar 

  • Beare RJ, MacVean MK, Holtslag AAM, Cuxart J, Esau I, Golaz JC, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118(2):247–272

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange M (2005) A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17(2):025105

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere, theory, history, and application. Kluwer Academic Publishers, Dordrecht, p 302

    Book  Google Scholar 

  • Brutsaert W (2005) Hydrology: an introduction. Cambridge University Press, Cambridge, 618 pp

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Canuto C, Hussaini M, Quarteroni A, Zang T (1988) Spectral methods in fluid dynamics. Springer-Verlaag, Netherlands

    Book  Google Scholar 

  • Deardorff JW (1974) Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol 7(1):81–106

    Article  Google Scholar 

  • Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18(4):495–527

    Article  Google Scholar 

  • Germano M, Piomelli U, Moin P, Cabot W (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids 3:1760–1765

    Article  Google Scholar 

  • Ghosal S, Lund TS, Moin P, Akselvoll K (1995) A dynamic localization model for large-eddy simulation of turbulent flows. J Fluid Mech 286:229–255

    Article  Google Scholar 

  • Huang J, Bou-Zeid E (2013) Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I: a large-eddy simulation study. J Atmos Sci 70(6):1513–1527

    Article  Google Scholar 

  • Khani S, Waite ML (2015) Large eddy simulations of stratified turbulence: the dynamic Smagorinsky model. J Fluid Mech 773:327–344

    Article  Google Scholar 

  • Kleissl J, Kumar V, Meneveau C, Parlange MB (2006) Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: validation in stable and unstable conditions. Water Resour Res 42(6)

  • Kleissl J, Meneveau C, Parlange MB (2003) On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer. J Atmos Sci 60(19):2372–2388

    Article  Google Scholar 

  • Kosovic B (1997) Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J Fluid Mech 336:151–182

    Article  Google Scholar 

  • Kosovic B, Curry JA (2000) A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J Atmos Sci 57(8):1052–1068

    Article  Google Scholar 

  • Lenschow D, Wyngaard JC, Pennell WT (1980) Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J Atmos Sci 37(6):1313–1326

    Article  Google Scholar 

  • Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: in Proceedings of the IBM scientific computing symposium on environmental sciences. Yorktown Heights, NY, USA, p 167

  • Mason PJ (1994) Large-eddy simulation: a critical review of the technique. Q J R Meteorol Soc 120(515):1–26

    Article  Google Scholar 

  • Mason PJ, Thomson DJ (1992) Stochastic backscatter in large-eddy simulations of boundary layers. J Fluid Mech 242:51–78

    Article  Google Scholar 

  • Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation. Annu Rev Fluid Mech 32(1):1–32

    Article  Google Scholar 

  • Meneveau C, Lund TS, Cabot WH (1996) A lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385

    Article  Google Scholar 

  • Moeng C (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 46:2311–2330

    Article  Google Scholar 

  • Moeng C-H, Sullivan PP (1994) A comparison of shear-and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51(7):999–1022

    Article  Google Scholar 

  • Moin P, Squires KD, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids 3:2746

    Article  Google Scholar 

  • Nieuwstadt FT (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41(14):2202–2216

    Article  Google Scholar 

  • Nieuwstadt FT (1985) A model for the stationary, stable boundary layer. In: Hunt JCR (ed) Turbulence and diffusion in stable environments. Oxford University Press, Oxfird, pp 149–179

    Google Scholar 

  • Nieuwstadt FT, Mason PJ, Moeng C-H, Schumann U (1993) Large-eddy simulation of the convective boundary layer: A comparison of four computer codes. In: Turbulent shear flows 8. Springer, pp 343–367

  • Piomelli U, Balaras E (2002) Wall-layer model for large-eddy simulations. Annu Rev Fluid Mech 34:349–374

    Article  Google Scholar 

  • Porté-Agel F (2004) A scale-dependent dynamic model for scalar transport in large-eddy simulations of the atmospheric boundary layer. Boundary-Layer Meteorol 112:81–105

    Article  Google Scholar 

  • Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284

    Article  Google Scholar 

  • Redelsperger J-L, Mahé F, Carlotti P (2001) A simple and general subgrid model suitable both for surface layer and free-stream turbulence. Boundary-Layer Meteorol 101(3):375–408

    Article  Google Scholar 

  • Rozema W, Bae HJ, Moin P, Verstappen R (2015) Minimum-dissipation models for large-eddy simulation. Phys Fluids 27(8):085107

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  • Stevens B, Moeng C-H, Sullivan PP (2000) Entrainment and subgrid lengths cales in large-eddy simulations of atmospheric boundary-layer flows. In: IUTAM symposium on developments in geophysical turbulence. Springer, pp 253–269

  • Stoll R, Porté-Agel F (2006a) Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour Res 42(1):W01409

    Article  Google Scholar 

  • Stoll R, Porté-Agel F (2006b) Effect of roughness on surface boundary conditions for large-eddy simulation. Boundary-Layer Meteorol 118:169–187

    Article  Google Scholar 

  • Stoll R, Porté-Agel F (2008) Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Boundary-Layer Meteorol 126(1):1–28

    Article  Google Scholar 

  • Stull R (1988) An introduction to boundary-layer meteorology. Kluwer Academic Publishers, Dordrecht, 670 pp

  • Sullivan PP, Horst TW, Lenschow DH, Moeng C-H, Weil JC (2003) Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J Fluid Mech 482:101–139

    Article  Google Scholar 

  • Sullivan PP, McWilliams JC, Moeng C-H (1994) A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 71(3):247–276

    Article  Google Scholar 

  • Sullivan PP, Patton EG (2011) The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J Atmos Sci 68(10):2395–2415

    Article  Google Scholar 

  • Sullivan PP, Weil JC, Patton EG, Jonker HJ, Mironov DV (2016) Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J Atmos Sci 73(4):1815–1840

    Article  Google Scholar 

  • Verstappen R (2011) When does eddy viscosity damp subfilter scales sufficiently? J Sci Comput 49(1):94–110

    Article  Google Scholar 

  • Verstappen R (2016) How much eddy dissipation is needed to counterbalance the nonlinear production of small, unresolved scales in a large-eddy simulation of turbulence? Comput Fluids. (in press)

  • Verstappen R, Bose S, Lee J, Choi H, Moin P (2010) A dynamic eddy-viscosity model based on the invariants of the rate-of-strain. In: Proceedings of the summer program center for turbulence research. Stanford University, pp 183–192

  • Verstappen R, Rozema W, Bae H (2014) Numerical scale separation in large-eddy simulation. In: Proceedings of the summer program center for turbulence research. Stanford University, pp 417–426

  • Vreman B, Geurts B, Kuerten H (1997) Large-eddy simulation of the turbulent mixing layer. J Fluid Mech 339:357–390

    Article  Google Scholar 

  • Zhou B, Chow FK (2011) Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J Atmos Sci 68(9):2142–2155

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NASA (Grant No. NNX15AU93A). M. Abkar was also supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Abkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abkar, M., Moin, P. Large-Eddy Simulation of Thermally Stratified Atmospheric Boundary-Layer Flow Using a Minimum Dissipation Model. Boundary-Layer Meteorol 165, 405–419 (2017). https://doi.org/10.1007/s10546-017-0288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-017-0288-4

Keywords

Navigation