Skip to main content
Log in

Neuronal nicotinic receptor agonists: a multi-approach development of the pharmacophore

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Based on the results obtained with different automated computational approaches as applied to the study of eleven high-affinity agonists of the neuronal nicotine acetylcholine receptor (nAChR), belonging to different chemical classes, new relevant features were detected which complement the existing pharmacophores. Convergent results from DISCO (Distance Comparison), QXP (Quick Explore), Catalyst/HipHop, and MIPSIM (Molecular Interaction Potential Similarity) allowed us to identify and locate, in a well defined spatial arrangement, three geometrically independent key structural features: (i) a positively charged nitrogen atom for ionic or hydrogen bond interactions, (ii) a lone pair of the pyridine nitrogen or a specific lone pair of a carbonyl oxygen, as a hydrogen bond acceptor, and (iii) a centre of a hydrophobic area generally occupied by aliphatic cycles. The pharmacophore presented herein, along with predictive 2D and 3D QSAR models recently developed in our group, could represent valuable computational tools for the design of new nAChR agonists having therapeutical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McDonald, I.A., Cosford, N. and Vernier, J.M., Ann. Rep. in Med. Chem., 5 (1995) 41.

    Google Scholar 

  2. Holladay, M.W., Lebold, S.A. and Lin, N.H., Drug Dev. Res., 35 (1995) 191.

    Google Scholar 

  3. Holladay, M.W., Dart, M.J. and Lynch., J.K., J. Med. Chem., 40 (1997) 4169.

    Google Scholar 

  4. Arneric, P. and Brioni, J.D. (ed.), Neuronal Nicotinic Receptors, Wiley-Liss, New York, NY, (1999).

    Google Scholar 

  5. Levin, E.D., Drug Dev. Res., 38 (1996) 188.

    Google Scholar 

  6. Gualtieri, F., Pharm. Acta Helvet., 74 (2000) 85.

    Google Scholar 

  7. Newhouse, P.A. and Kelton, M., Pharm. Acta Helvet., 74 (2000) 91.

    Google Scholar 

  8. Shacka, J.J. and Robinson, S.E., Med. Chem. Res., 6 (1996) 444.

    Google Scholar 

  9. Miyazawa, A., Fujiyoshi, Y., Stowell, M. and Unwin, N., J. Mol. Biol., 288 (1999) 765.

    Google Scholar 

  10. Dart, M.J., Wasicak, K.B., Ryther, K.B., Schrimpf, M.R., Kim, K.H., Anderson, D.J., Sullivan, J.P. and Meyer, M.D., Pharm. Acta Helvet., 74 (2000) 115.

    Google Scholar 

  11. Beers, W.H. and Reich, E., Nature, 225 (1970) 917.

    Google Scholar 

  12. Sheridan, R.P., Nilakantan, R., Dixon, J.S. and Venkataraghavan, R.J., J. Med. Chem, 29 (1986) 899.

    Google Scholar 

  13. Barlow, R.B. and Johnson, O., Br. J. Pharmacol., 98 (1989) 799.

    Google Scholar 

  14. Manallack, D.T., Gallagher, T. and Livingstone D.J., In Deviller, James (Ed.) Neural networks in QSAR and Drug Design, Rillieux la Pape, France, 1996.

    Google Scholar 

  15. Barreiro, E.J., Barreiro, G., Guimarã es, C.R.W. and Bicca de Alencastro, R., J. Mol. Str: Theochem., 532 (2000) 11.

    Google Scholar 

  16. Tonder, J.E., Olesen, P., Hansen, J.B., Begtrup, M. and Petterson, I., J. Comput. Aid. Mol. Des., 15 (2001) 247.

    Google Scholar 

  17. van de Waterbeemd, Han (ed.), Chemometric Methods in Molecular Design, Wiley-VCH, Weinheim, 1995.

    Google Scholar 

  18. Damaj, M.I., Glassco, W., Dukat, M., May, L.M., Glennon, R.A. and Martin, B.R. Drug Dev. Res., 38 (1996) 177.

    Google Scholar 

  19. Nicolotti, O., Pellegrini-Calace, M., Altomare, C., Carotti, A. and Sanz, F., Curr. Med Chem., in press.

  20. DRAGON1.0, Talete srl, Todeschini, R. and Consonni, V. (2000).

  21. Allen, F.H. and Kennard O., Chem. Des. Autom News, 8 (1993) 31.

    Google Scholar 

  22. Stewart J.J.P. MOPAC: a semiempirical orbital program J. Comput Aid. Mol. Des. 4. (1990), 1.

    Google Scholar 

  23. SYBYL, TRIPOS Inc., St. Louis, MO, USA.

  24. Vedani, A. and Duniz, J.D., J. Am. Chem. Soc., 107 (1985) 7653.

    Google Scholar 

  25. Ippolito, J.A., Alexander, R.S. and Christianson, D.W., J. Mol. Biol., 215 (1990) 457.

    Google Scholar 

  26. Kollman, P.A., Case, D., Singh, U.C., Alagona, G., Profeta, S. and Weiner, P. J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  27. Polak, E. and Ribiere, G., Rev. Fran. Infor. Rech. Oper., 16 (1969) 35.

    Google Scholar 

  28. Thompson, P.E., Manallack, D.T., Blaney, F.E. and Gallagher, T. J. Comput. Aid. Mol. Des., 6 (1992) 287.

    Google Scholar 

  29. MacroModel 6.0; Copyright Columbia University 1986-1997.

  30. Jorgensen, W.L. and Tirado-Rives, J., J. Am. Chem. Soc., 110 (1988) 1657.

    Google Scholar 

  31. McMartin, C. and Bohacek R.S., J Comput. Aid. Mol. Des., 9 (1995) 237.

    Google Scholar 

  32. McMartin, C. and Bohacek R.S., J Comput. Aid. Mol. Des., 11 (1997) 333.

    Google Scholar 

  33. Martin, Y.C., Bures, M., Dahaner, E., DeLazzer, J., Lico, I. and Pavlik, P., J. Comput. Aid. Mol. Des. 7 (1993) 83.

    Google Scholar 

  34. Brint, A. and Willett, P., J. Chem. Inf. Comput. Sci., 27 (1987) 152.

    Google Scholar 

  35. Molecular Simulations Inc, 9865, Scranton Road, San Diego, CA 92121, USA.

  36. Barnum, D., Greene, J., Smellie, A. and Sprague, P., J. Chem. Inf. Comput. Sci. 36 (1996) 563.

    Google Scholar 

  37. Smellie, A., Teig, S. and Towbin, P., J. Comp. Chem., 16 (1995) 171.

    Google Scholar 

  38. Smellie, A., Kahn, S.D. and Teig, S., J. Chem. Inf. Comput. Sci., 35 (1995) 295.

    Google Scholar 

  39. Greene, J., Kahn, S., Savoj, H., Sprague, P. and Teig, S., J. Chem. Inf. Comput. Sci., 34 (1994) 1297.

    Google Scholar 

  40. Orozco, M. and Luque F.J., In: Murray, J.S. and Sen, K. (Eds.), Molecular Electrostatic Potentials: Concepts and Applications. Theoretical and Computational Chemistry, Vol. 3, Elsevier, Amsterdam, 1996. pp. 181-218.

    Google Scholar 

  41. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M. and Montgomery J.A., J. Comput. Chem., 14 (1993) 1347.

    Google Scholar 

  42. De Càceres, M., Villà, J., Lozano, J.J. and Sanz, F. Bioinformatics, 16 (2000) 568.

    Google Scholar 

  43. Sanz F., Manaut F., Rodriguez J., Lozoya E. and Lopez-de-Brinas E., J. Comput. Aid. Mol. Des., 7 (1993) 337.

    Google Scholar 

  44. Goodford, P.J., Med. Chem., 28 (1985) 849.

    Google Scholar 

  45. Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Vagli, R. and Clementi, S., Quant. Struct.-Act. Rel., 12 (1993) 9.

    Google Scholar 

  46. Wermouth, C.G., Ganellin, C.R., Lindberg, P. and Mitscher, L.A., Ann. Rep. Med. Chem., 36 (1998) 385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolotti, O., Pellegrini-Calace, M., Carrieri, A. et al. Neuronal nicotinic receptor agonists: a multi-approach development of the pharmacophore. J Comput Aided Mol Des 15, 859–872 (2001). https://doi.org/10.1023/A:1013115717587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013115717587

Navigation