Skip to main content
Log in

Differentiation of the Agonists and Antagonists of the α7 Nicotinic Acetylcholine Receptor

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central and peripheral nervous systems and are important drug targets for the treatment of neurological diseases. However, differentiation of the agonists and antagonists of the nAChR is difficult. In this study we aimed to develop a reliable and efficient computational approach for differentiation of the agonists from the antagonists of the nAChR based on a systematical analysis of 123 ligands (87 agonists, 12 partial agonists, and 24 antagonists) binding with the extracellular domain of the α7 nAChR chimera. Our results suggest that the ligand size and ligand binding affinity cannot differentiate the agonists from the antagonists of the nAChR. The ligand efficiency that considers both ligand binding affinity and size for the agonists is overall more left shifted in comparison to the antagonists, but the values of the ligand efficiency still cannot differentiate the agonists from the antagonists unless the values are either relatively high (more than −0.3 kcal mol−1) or relatively low (less than −0.45 kcal mol−1). Our results suggest that accurate prediction of the agonist or antagonist of the nAChR is challenging and the ligand innate configuration has to be considered as an extra for differentiation of the agonists from the antagonists of the nAChR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, P. R., Craik, D. J., and Martin, J. L., 1984. Functional group contributions to drug-receptor interactions. Journal of Medicinal Chemistry, 27: 1648–1657.

    Article  Google Scholar 

  • Beinat, C., Banister, S. D., Herrera, M., Law, V., and Kassiou, M., 2015. The therapeutic potential of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. CNS Drugs, 29: 529–542.

    Article  Google Scholar 

  • Beinat, C., Banister, S. D., Herrera, M., and Kassiou, M., 2016. The recent development of α7 nicotinic acetylcholine receptor (nAChR) ligands as therapeutic candidates for the treatment of central nervous system (CNS) diseases. Current Pharmaceutical Design, 22: 2134–2151.

    Article  Google Scholar 

  • Brams, M., Pandya, A., Kuzmin, D., van Elk, R., Krijnen, L., Yakel, J. L., Tsetlin, V., Smit, A. B., and Ulens, C. A., 2011. A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cys-loop receptors. PLoS Computational Biology, 9: e1001034.

    Google Scholar 

  • Bunnelle, W. H., Dart, M. J., and Schrimpf, M. R., 2004. Design of ligands for the nicotinic acetylcholine receptors: The quest for selectivity. Current Topics in Medicinal Chemistry, 4: 299–334.

    Article  Google Scholar 

  • Cheng, X., Wang, H., Grant, B., Sine, S. M., and McCammon, J. A., 2006. Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. Plos Computational Biology, 2: e134.

    Google Scholar 

  • Corradi, J., and Bouzat, C., 2016. Understanding the bases of function and modulation of α7 nicotinic receptors: Implications for drug discovery. Molecular Pharmacology, 90: 288–299.

    Article  Google Scholar 

  • Deneris, E. S., Connolly, J., Rogers, S. W., and Duvoisin, R., 1991. Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors. Trends in Pharmacological Sciences, 12: 34–40.

    Article  Google Scholar 

  • Gao, F., Bren, N., Burghardt, T. P., Hansen, S., Henchman, R. H., Taylor, P., McCammon, J. A., and Sine, S. M., 2005. Agonist-mediated conformational changes in acetylcholinebinding protein revealed by simulation and intrinsic tryptophan fluorescence. Journal of Biological Chemistry, 280: 8443–8451.

    Article  Google Scholar 

  • Hansen, S. B., Sulzenbacher, G., Huxford, T., Marchot, P., Taylor, P., and Bourne, Y., 2005. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. Embo Journal, 24: 3635–3646.

    Article  Google Scholar 

  • Hibbs, R. E., Sulzenbacher, G., Shi, J., Talley, T. T., Conrod, S., Kem, W. R., Taylor, P., Marchot, P., and Bourne, Y., 2009. Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal α7 nicotinic acetylcholine receptor. Embo Journal, 28: 3040–3051.

    Article  Google Scholar 

  • Hopkins, A. L., Groom, C. R., and Alex, A., 2004. Ligand efficiency: A useful metric for lead selection. Drug Discovery Today, 9: 430–431.

    Article  Google Scholar 

  • Huang, S., Li, S. X., Bren, N., Cheng, K., Gomoto, R., Chen, L., and Sine, S. M., 2013. Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera. Biochemical Journal, 454: 303–310.

    Article  Google Scholar 

  • Jensen, A. A., Frolund, B., Liljefors, T., and Krogsgaard-Larsen, P., 2005. Neuronal nicotinic acetylcholine receptors: Structural revelations, target identifications, and therapeutic inspirations. Journal of Medicinal Chemistry, 48: 4705–4745.

    Article  Google Scholar 

  • Kalkman, H. O., and Feuerbach, D., 2016. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cellular and Molecular Life Sciences, 73: 2511–2530.

    Article  Google Scholar 

  • Kitchen, D. B., Decornez, H., Furr, J. R., and Bajorath, J., 2004. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3: 935–949.

    Article  Google Scholar 

  • Kuntz, I. D., Chen, K., Sharp, K. A., and Kollman, P. A., 1999. The maximal affinity of ligands. Proceedings of the National Academy of Sciences of the United States of America, 96: 9997–10002.

    Article  Google Scholar 

  • Le Novere, N., and Changeux, J. P., 1995. Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells. Journal of Molecular Evolution, 40: 155–172.

    Article  Google Scholar 

  • Li, S. X., Huang, S., Bren, N., Noridomi, K., Dellisanti, C. D., Sine, S. M., and Chen, L., 2011. Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist. Nature Neuroscience, 14: 1253–1259.

    Article  Google Scholar 

  • Liu, Z., Neff, R. A., and Berg, D. K., 2006. Sequential interplay of nicotinic and GABAergic signaling guides neuronal development. Science, 314: 1610–1613.

    Article  Google Scholar 

  • Ma, Q., Tae, H. S., Wu, G., Jiang, T., and Yu, R., 2017. Exploring the relationship between nicotinic acetylcholine receptor ligand size, efficiency, efficacy and C-loop opening. Journal of Chemical Information and Modeling, 57: 1947–1956.

    Article  Google Scholar 

  • Ondachi, P. W., Castro, A. H., Luetje, C. W., Wageman, C. R., Marks, M. J., Damaj, M. I., Mascarella, S. W., Navarro, H. A., and Carroll, F. I., 2017. Synthesis, nicotinic acetylcholine binding, and in vitro and in vivo pharmacological properties of 2'-fluoro-(carbamoylpyridinyl)deschloroepibatidine analogues. Acs Chemical Neuroscience, 7: 1004–1012.

    Article  Google Scholar 

  • Paterson, D., and Nordberg, A., 2000. Neuronal nicotinic receptors in the human brain. Progress in Neurobiology, 61: 75–111.

    Article  Google Scholar 

  • Romanelli, M. N., Gratteri, P., Guandalini, L., Martini, E., Bonaccini, C., and Gualtieri, F., 2007. Central nicotinic receptors: Structure, function, ligands, and therapeutic potential. Chem Med Chem, 2: 746–767.

    Article  Google Scholar 

  • Séguéla, P., Wadiche, J., Dineley-Miller, K., Dani, J. A., and Patrick, J. W., 1993. Molecular cloning, functional properties, and distribution of rat brain alpha 7: A nicotinic cation channel highly permeable to calcium. Journal of Neuroscience, 13: 596–604.

    Article  Google Scholar 

  • Skok, M., and Lykhmus, O., 2016. The role of α7 nicotinic acetylcholine receptors and α7-specific antibodies in neuroinflammation related to alzheimer disease. Current Pharmaceutical Design, 22: 2035–2049.

    Article  Google Scholar 

  • Taly, A., Corringer, P. J., Guedin, D., Lestage, P., and Changeux, J. P., 2009. Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nature Reviews Drug Discovery, 8: 733–750.

    Article  Google Scholar 

  • Vilar, S., Cozza, G., and Moro, S., 2008. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Current Topics in Medicinal Chemistry, 8: 1555–1572.

    Article  Google Scholar 

  • Zanetti, S. R., Ziblat, A., Torres, N. I., Zwirner, N. W., and Bouzat, C., 2016. Expression and functional role of α7 nicotinic receptor in human cytokine-stimulated Natural Killer (NK) cells. Journal of Biological Chemistry, 29: 16541–16552.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. 201762011 for R. Y.), National Laboratory Director Fund from the Qingdao National Laboratory of Marine Science and Technology (No. QNLM201709), and the NSFC-Shandong Joint Fund (No. U1406402). The authors gratefully acknowledge the funding from the above sources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Jiang or Rilei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Xu, Q., Bao, Y. et al. Differentiation of the Agonists and Antagonists of the α7 Nicotinic Acetylcholine Receptor. J. Ocean Univ. China 18, 1193–1198 (2019). https://doi.org/10.1007/s11802-019-3818-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3818-5

Key words

Navigation