Skip to main content
Log in

Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4a–c
Fig. 5a–f

Similar content being viewed by others

References

  1. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP (2009) Nat Rev Drug Discov 8:733–750

  2. Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA (2004) Trends Neurosci 27:329–336

  3. Levin ED, Rezvani AH (2007) Biochem Pharmacol 74:1182–1191

  4. Arneric SP, Holladay M, Williams M (2007) Biochem Pharmacol 74:1092–1101

  5. Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) J Neurosci 13(2):596–604

  6. Martin LF, Kem WR, Freedman R (2004) Psychopharmacology 174:54–64

  7. Collins AC, Marks MJ (1991) J Addict Dis 10(1–2):109–126

  8. Morales-Perez CL, Noviello CM, Hibbs RE (2016) Nature 538:411–415

  9. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van der Oost J, Smit AB, Sixma TK (2001) Nature 411:269–276

  10. Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P, Bourne Y (2005) EMBO J 24:3635–3646

  11. Brams M, Pandya A, Kuzmin D, van Elk R, Krijnen L, Yakel JL, Tsetlin V, Smit AB, Ulens C (2011) PLoS Biol 9:e1001034

  12. Liu X, Xu Y, Li H, Wang X, Jiang H, Barrantes FJ (2008) PLoS Comput Biol 4:e19

  13. Cheng X, Wang H, Grant B, Sine SM, McCammon JA (2006) PLoS Comput Biol 2:e134

  14. Hibbs RE, Sulzenbacher G, Shi J, Talley TT, Conrod S, Kem WR, Taylor P, Marchot P, Bourne Y (2009) EMBO J 28:3040–3051

  15. Torrie GM, Valleau JP (1977) J Comput Phys 23:187–199

  16. Ulens C, Hogg RC, Celie PH, Bertrand D, Tsetlin V, Smit AB, Sixma TK (2006) Proc Natl Acad Sci USA 103:3615–3620

  17. Yu R, Craik DJ, Kaas Q (2011) PLoS Comput Biol 7:e1002011

  18. Webb B, Sali A (2016) Curr Protoc Protein Sci 86:2.9.1–2.9.37

    Article  Google Scholar 

  19. Yu R, Tabassum N, Jiang T (2016) Bioorg Med Chem Lett 26:1296–1300

  20. Li SX, Huang S, Bren N, Noridomi K, Dellisanti CD, Sine SM, Chen L (2011) Nat Neurosci 14:1253–1259

  21. Suresh A, Hung A (2016) J Mol Graph Model 70:109–121

  22. Trott O, Olson AJ (2010) J Comput Chem 31:455–461

  23. Kitchen DB, Decornez H, Furr JR, Bajorath (2004) J Nat Rev Drug Discov 3:935–949

    Article  CAS  Google Scholar 

  24. Huang X, Zheng F, Zhan C-G (2008) J Am Chem Soc 130:16691–16696

  25. Hibbs RE, Sulzenbacher G, Shi J, Talley TT, Conrod S, Kem WR, Taylor P, Marchot P, Bourne Y (2009) EMBO J 28:3040–5125

  26. Spurny R, Debaveye S, Farinha A, Veys K, Vos AM, Gossas T, Atack J, Bertrand S, Bertrand D, Danielson UH (2015) Proc Natl Acad Sci USA 112:E2543–E2552

Download references

Acknowledgments

We are grateful to Prof. Philip Biggin for his comments about this manuscript. This work was supported by grants from the Natural Science Foundation of China (NSFC) (no. 81502977), the China Postdoctoral Science Foundation (861505020050 and 2016 T90655), and the Special Foundation for Qingdao Basic Research Program (15-9-1-85-jch). The authors gratefully acknowledge the funding from the above sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rilei Yu.

Electronic supplementary material

Figure S1

The opening distances of the C-loop of AChBP bound to full agonists (“agonists” in the figure), partial agonists, and antagonists of α7 nAChR (data are for the relevant crystal structures). When AChBP is bound to full agonists (PDB ID: 2BYQ, 2WNL), the C loop is more closed than when AChBP is bound to partial agonists (PDB ID: 4AFH, 2WNC, 2WNJ, 2WN9) and antagonists (PDB ID: 2XYS, 2XYT). Overall, the C-loop opening distance increases in the following order: full agonists < partial agonists < antagonists. (DOC 8732 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabassum, N., Ma, Q., Wu, G. et al. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor. J Mol Model 23, 251 (2017). https://doi.org/10.1007/s00894-017-3419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3419-4

Keywords

Navigation