Skip to main content
Log in

Quantum Logic for Quantum Computers

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The following results obtained within a project of finding the algebra of statesin a general-purpose quantum computer are reported: (1) All operations of anorthomodular lattice, including the identity, are fivefold-defined; (2) there arenonorthomodular models for both quantum and classical logics; (3) there is afour-variable orthoarguesian lattice condition which contains all known orthoarguesianlattice conditions including six- and five-variable ones. Repercussions to quantumcomputers operating as quantum simulators are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Boghosian, B. M., and Taylor, W. (1998). Simulating quantum mechanics on a quantum computer, Physica D 120, 30-42.

    Google Scholar 

  • Christianson, B., Knight, P. L., and Beth, T. (1998). Implementations of quantum logic, Phil. Trans. R. Soc. Lond. A 356, 1823-1838.

    Google Scholar 

  • Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A 400, 97-117.

    Google Scholar 

  • Feynman, R. P. (1982). Simulating physics with computers, Int. J. Theor. Phys. 21, 467-488.

    Google Scholar 

  • Feynman, R. P. (1986). Quantum mechanical computers, Found. Phys. 16, 507-531.

    Google Scholar 

  • Godowski, R., and Greechie, R. (1984). Some equations related to the states on orthomodular lattices, Demonstratio Math. 17, 241-250.

    Google Scholar 

  • Grover, L. K. (1997). Quantum computers can search arbitrarily large databases by a single query, Phys. Rev. Lett. 79, 4709-4712.

    Google Scholar 

  • Holland, Jr., S. S. (1995). Orthomodularity in infinite dimensions; a theorem of M. Sole`r, Bull. Am. Math. Soc. 32, 205-234.

    Google Scholar 

  • Ivert, P.-A., and Sjo¨din, T. (1978). On the impossibility of a finite propositional lattice for quantum mechanics, Helv. Phys. Acta 51, 635-636.

    Google Scholar 

  • Kalmbach, G. (1983). Orthomodular Lattices, Academic Press, London.

    Google Scholar 

  • McKay, B. D., Megill, N. D., and Pavic?ic´, M. (2000). Isomorph-free exhaustive generation of Greechie diagrams and automated checking of their passage of orthomodular lattice equations, Int. J. Theor. Phys., in press.

  • Maczy?ski, M. J. (1972). Hilbert space formalism of quantum mechanics without the Hilbert space axiom, Rep. Math. Phys. 3, 209-219.

    Google Scholar 

  • Megill, N. D. and Pavi?ic, M. (2000). Equations and state properties that hold in all closed subspaces of an infinite dimensional Hilbert space, Int. J. Theor. Phys. in press.

  • Pavi?i?, M. (1987). Minimal quantum logic with merged implications, Int. J. Theor. Phys. 26, 845-852.

    Google Scholar 

  • Pavi?i?, M. (1993). Nonordered quantum logic and its YES-NO representation, Int. J. Theor. Phys. 32, 1481-1505.

    Google Scholar 

  • Pavi?i?, M. (1995). Spin-correlated interferometry with beam splitters: Preselection of spincorrelated photons, J. Opt. Soc. Am. B 12, 821-828.

    Google Scholar 

  • Pavi?i?, M. (1998). Identity rule for classical and quantum theories, Int. J. Theor. Phys. 37, 2099-2103.

    Google Scholar 

  • Pavi?i?, M., and Megill, N. D. (1998a). Quantum and classical implication algebras with primitive implications, Int. J. Theor. Phys. 37, 2091-2098.

    Google Scholar 

  • Pavi?i?, M., and Megill, N. D. (1998b). Binary orthologic with modus ponens is either orthomodular or distributive, Helv. Phys. Acta 71, 610-628.

    Google Scholar 

  • Pavi?i?, M., and Megill, N. D. (1999). Non-orthomodular models for both standard quantum logic and standard classical logic: Repercussions for quantum computers, Helv. Phys. Acta 72, 189-210.

    Google Scholar 

  • Pavi?i?, M., and Summhammer, J. (1994). Interferometry with two pairs of spin correlated photons, Phys. Rev. Lett. 73, 3191-3194.

    Google Scholar 

  • Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comp. 26, 1484-1509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavičić, M. Quantum Logic for Quantum Computers. International Journal of Theoretical Physics 39, 813–825 (2000). https://doi.org/10.1023/A:1003674812809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003674812809

Keywords

Navigation