Skip to main content

Advertisement

Log in

The Use of Finite Element Models to Assist Understanding and Treatment For Scoliosis: A Review Paper

  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Introduction

Scoliosis is a complex spinal deformity whose etiology is still unknown, and its treatment presents many challenges. Finite element modeling (FEM) is one of the analytical techniques that has been used to elucidate the mechanism of scoliosis and the effects of various treatments.

Methods

A literature review on the application of FEM in scoliosis evaluation and treatment has been undertaken. A literature search was performed in each of three major electronic databases (Google Scholar, Web of Science, and Ovid) using the key words “scoliosis” and “finite element methods/model”. Articles using FEM and having a potential impact on clinical practice were included.

Results

A total of 132 abstracts were retrieved. The query returned 105 articles in which the abstracts appeared to correspond to this review’s focus, and 85 papers were retained. The current state of the art of FEM related to the biomechanical analysis of scoliosis is discussed in 4 sections: the etiology of adolescent idiopathic scoliosis, brace treatment, instrumentation treatment, and sensitivity studies of FEM. The limitations of FEM and suggested future work are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrier J, Aubin CE, Villemure I, Labelle H. Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput 2004;42:541–8.

    Article  CAS  PubMed  Google Scholar 

  2. Nie W-Z, Ye M, Wang Z-Y. Infinite models in scoliosis: a review of the literature and analysis of personal experience. Biomedizinische Technik 2008;53:174–80.

    Article  PubMed  Google Scholar 

  3. Asher MA, Burton DC. Adolescent idiopathic scoliosis: natural history and long term treatment effects. Scoliosis 2006;1:2.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Majdouline Y, Aubin C-E, Robitaille M, et al. Scoliosis correction objectives in adolescent idiopathic scoliosis. J Pediatr Orthop 2007;27:775–81.

    Article  PubMed  Google Scholar 

  5. Little JP, Adam C. Towards determining soft tissue properties for modelling spine surgery: current progress and challenges. Med Biol Eng Comput 2012;50:199–209.

    Article  PubMed  Google Scholar 

  6. Clin J, Aubin CE, Lalonde N, et al. A new method to include the gravitational forces in a finite element model of the scoliotic spine. Med Biol Eng Comput 2011;49:967–77.

    Article  PubMed  Google Scholar 

  7. Gilbertson LG, Goel VK, Kong WZ, Clausen JD. Finite element methods in spine biomechanics research. Crit Rev Biomed Eng 1995;23:411–73.

    Article  CAS  PubMed  Google Scholar 

  8. Little JP, Adam C. Patient-specific computational biomechanics for simulating adolescent scoliosis surgery: predicted vs clinical correction for a preliminary series of six patients. Int J Numer Meth Biomed 2011;27:347–56.

    Article  Google Scholar 

  9. Azegami H, Murachi S, Kitoh J, et al. Etiology of idiopathic scoliosis—Computational study. Clin Orthop Relat Res 1998;357:229–36.

    Article  Google Scholar 

  10. Aubin CE, Petit Y, Stokes IAF, et al. Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Meth Biomech Biomed Engin 2003;6:27–32.

    Article  Google Scholar 

  11. Aubin CE, Goussev V, Petit Y. Biomechanical modelling of segmental instrumentation for surgical correction of 3D spinal deformities using Euler-Bernoulli thin-beam elastic deformation equations. Med Biol Eng Comput 2004;42:216–21.

    Article  CAS  PubMed  Google Scholar 

  12. Majdouline Y, Aubin CE, Sangole A, Labelle H. Computer simulation for the optimization of instrumentation strategies in adolescent idiopathic scoliosis. Med Biol Eng Comput 2009;47:1143–54.

    Article  PubMed  Google Scholar 

  13. Ghista DN, Viviani GR, Subbaraj K, et al. Biomechanical basis of optimal scoliosis surgical-correction. J Biomech 1988;21:77–88.

    Article  CAS  PubMed  Google Scholar 

  14. Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical-correction. Clin Orthop Relat Res 1986;208:40–7.

    Google Scholar 

  15. Subbaraj K, Ghista DN, Viviani GR. Presurgical finite-element simulation of scoliosis correction. J Biomed Eng 1989;11:9–18.

    Article  CAS  PubMed  Google Scholar 

  16. Madeira JFA, Pina HL, Pires EB, Monteiro J. Surgical correction of scoliosis: numerical analysis and optimization of the procedure. Int J Numer Meth Biomed 2010;26:1087–98.

    Article  Google Scholar 

  17. Carrier J, Aubin CE, Trochu F, Labelle H. Optimization of rib surgery parameters for the correction of scoliotic deformities using approximation models. J Biomech Eng 2005;127:680–91.

    Article  CAS  PubMed  Google Scholar 

  18. Villemure I, Aubin CE, Dansereau J, Labelle H. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation. J Biomech Eng 2002;124:784–90.

    Article  CAS  PubMed  Google Scholar 

  19. Villemure I, Aubin CE, Dansereau J, Labelle H. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J 2004;13:83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duke K, Aubin CE, Dansereau J, Labelle H. Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin Biomech 2005;20:923–31.

    Article  Google Scholar 

  21. Huynh AM, Aubin CE, Mathieu PA, Labelle H. Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscles and vertebral growth modulation. Clin Biomech 2007;22:392–9.

    Article  CAS  Google Scholar 

  22. Duke K, Aubin CE, Dansereau J, Labelle H. Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery. Med Biol Eng Comput 2008;46:33–41.

    Article  PubMed  Google Scholar 

  23. Perie D, Aubin CE, Petit Y, et al. Boston brace correction in idiopathic scoliosis: a biomechanical study. Spine (Phila Pa 1976) 2003;28:1672–7.

    Google Scholar 

  24. Clin J, Aubin CE, Parent S, Labelle H. A biomechanical study of the Charleston brace for the treatment of scoliosis. Spine (Phila Pa 1976) 2010;35:E940–7.

    Article  Google Scholar 

  25. Lafage V, Dubousset J, Lavaste F, Skalli W. 3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg 2004;9:17–25.

    Article  CAS  PubMed  Google Scholar 

  26. Stokes IAF, Laible JP. 3-dimensional osseoligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech 1990;23:589–95.

    Article  CAS  PubMed  Google Scholar 

  27. Gardner-Morse M, Stokes IAF. 3-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation. J Biomech 1994;27:177–81.

    Article  CAS  PubMed  Google Scholar 

  28. Lafage V, Dubousset J, Lavaste F, Skalli W. Finite element simulation of various strategies for CD correction. Stud Health Technol Inform 2002;91:428–32.

    CAS  PubMed  Google Scholar 

  29. Lafon Y, Lafage V, Dubousset J, Skalli W. Intraoperative three-dimensional correction during rod rotation technique. Spine (Phila Pa 1976) 2009;34:512–9.

    Article  Google Scholar 

  30. Lafon Y, Steib JP, Skalli W. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model. Spine (Phila Pa 1976) 2010;35:453–9.

    Article  Google Scholar 

  31. Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique. Comput Methods Biomech Biomed Engin 2005;8:331–7.

    Article  CAS  PubMed  Google Scholar 

  32. Stokes IAF, Gardner-Morse M. 3-dimensional simulation of Harrington distraction instrumentation for surgical-correction of scoliosis. Spine (Phila Pa 1976) 1993;18:2457–64.

    Article  CAS  Google Scholar 

  33. Grealou L, Aubin CE, Labelle H. Rib cage surgery for the treatment of scoliosis: a biomechanical study of correction mechanisms. J Orthop Res 2002;20:1121–8.

    Article  CAS  PubMed  Google Scholar 

  34. Meijer GJM, Homminga J, Hekman EEG, et al. The effect of three-dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment. J Biomech 2010;43:1590–7.

    Article  CAS  PubMed  Google Scholar 

  35. Fok J, Adeeb S, Carey J. FEM simulation of non-progressive growth from asymmetric loading and vicious cycle theory: scoliosis study proof of concept. Open Biomed Eng J 2010;4:162–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rajasekaran S, Natarajan RN, Babu JN, et al. Lumbar vertebral growth is governed by “chondral growth force response curve” rather than “Hueter-Volkmann Law.” Spine (Phila Pa 1976) 2011;36:E1435–45.

    Article  CAS  Google Scholar 

  37. Cahill PJ, Wang W, Asghar J, et al. The use of a transition rod may prevent proximal junctional kyphosis in the thoracic spine following scoliosis surgery: a finite element analysis. Spine (Phila Pa 1976) 2012;37:E687–95.

    Article  Google Scholar 

  38. Rohlmann A, Zander T, Burra NK, Bergmann G. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: a finite element analysis of different features of Orthobiom (TM). Eur Spine J 2008;17:217–23.

    Article  CAS  PubMed  Google Scholar 

  39. Sevrain A, Aubin CE, Gharbi H, et al. Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study. Scoliosis 2012;7:2.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lalonde NM, Villemure I, Pannetier R, et al. Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery. Clin Biomech 2010;25:510–6.

    Article  CAS  Google Scholar 

  41. Rohlmann A, Richter M, Zander T, et al. Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur Spine J 2006;15:457–64.

    Article  PubMed  Google Scholar 

  42. Driscoll M, Aubin CE, Moreau A, Parent S. Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis. Med Biol Eng Comput 2011;49:1437–45.

    Article  PubMed  Google Scholar 

  43. Li XF, Liu ZD, Dai LY, et al. Dynamic response of the idiopathic scoliotic spine to axial cyclic loads. Spine (Phila Pa 1976) 2011;36:521–8.

    Article  Google Scholar 

  44. Stokes IAF, Spence H, Aronsson DD, Kilmer N. Mechanical modulation of vertebral body growth: implications for scoliosis progression. Spine (Phila Pa 1976) 1996;21:1162–7.

    Article  CAS  Google Scholar 

  45. Shi L, Wang D, Driscoll M, et al. Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects. Scoliosis 2011;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Takeuchi K, Azegami H, Murachi S, et al. Study on treatment with respect to idiopathic scoliosis: sensitivity analysis based on buckling theory. JSME Int J 2001;44:1059–64.

    Article  Google Scholar 

  47. Goto M, Kawakami N, Azegami H, et al. Buckling and bone modeling as factors in the development of idiopathic scoliosis. Spine (Phila Pa 1976) 2003;28:364–70.

    Google Scholar 

  48. Sasaoka R, Azegami H, Murachi S, et al. Investigation of buckling phenomenon induced by growth of vertebral bodies using a mechanical spine model. JSME Int J 2003;46:1382–7.

    Article  Google Scholar 

  49. Van der Plaats A, Veldhuizen AG, Verkerke GJ. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Annal Biomed Eng 2007;35:1206–15.

    Article  Google Scholar 

  50. Stokes IAF, Gardner-Morse M. Analysis of the interaction between vertebral lateral deviation and axial rotation in scoliosis. J Biomech 1991;24:753–9.

    Article  CAS  PubMed  Google Scholar 

  51. Huynh A-M, Aubin CE, Rajwani T, et al. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J 2007;16:523–9.

    Article  PubMed  Google Scholar 

  52. Lin H, Aubin CE, Parent S, Villemure I. Mechanobiological bone growth: comparative analysis of two biomechanical modeling approaches. Med Biol Eng Comput 2009;47:357–66.

    Article  PubMed  Google Scholar 

  53. Lafortune P, Aubin CE, Boulanger H, et al. Biomechanical simulations of the scoliotic deformation process in the pinealectomized chicken: a preliminary study. Scoliosis 2007;2:16.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Villemure I, Aubin CE, Dansereau J, Labelle H. Biomechanical modelling of spinal growth modulation for the study of adolescent scoliotic deformities: a feasibility study. Stud Health Technol Inform 2002;88:373–7.

    CAS  PubMed  Google Scholar 

  55. Drevelle X, Dubousset J, Lafon Y, et al. Analysis of the mechanisms of idiopathic scoliosis progression using finite element simulation. Comput Methods Biomech Biomed Engin 2008;11:91–2.

    Article  Google Scholar 

  56. Drevelle X, Lafon Y, Ebermeyer E, et al. Analysis of idiopathic scoliosis progression by using numerical simulation. Spine (Phila Pa 1976) 2010;35:E407–12.

    Article  CAS  Google Scholar 

  57. Drevelle X, Dubousset J, Lafon Y, et al. Analysis of the mechanisms of idiopathic scoliosis progression using finite element simulation. Stud Health Technol Inform 2008;140:85–9.

    CAS  PubMed  Google Scholar 

  58. Driscoll M, Aubin CE, Moreau A, et al. The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J 2009;18:180–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Katz DE, Herring JA, Browne RH, et al. Brace wear control of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am 2010;92:1343–52.

    Article  PubMed  Google Scholar 

  60. Castro Jr FP Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle. Spine J 2003;3:180–5.

    Article  PubMed  Google Scholar 

  61. Gignac D, Aubin CE, Dansereau J, Labelle H. Optimization method for 3D bracing correction of scoliosis using a finite element model. Eur Spine J 2000;9:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perie D, Aubin CE, Lacroix M, et al. Personalized biomechanical modeling of Boston brace treatment in idiopathic scoliosis. Stud Health Technol Inform 2002;91:393–6.

    CAS  PubMed  Google Scholar 

  63. Perie D, De Gauzy JS, Hobatho MC. Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method. Med Biol Eng Comput 2002;40:296–301.

    Article  CAS  PubMed  Google Scholar 

  64. Perie D, Aubin CE, Petit Y, et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis. Clin Biomech 2004;19:190–5.

    Article  Google Scholar 

  65. Perie D, Aubin CE, Lacroix M, et al. Biomechanical modelling of orthotic treatment of the scoliotic spine including a detailed representation of the brace-torso interface. Med Biol Eng Comput 2004;42:339–44.

    Article  CAS  PubMed  Google Scholar 

  66. Clin J, Aubin CE, Parent S, et al. Biomechanical modeling of brace design. Stud Health Technol Inform 2006;123:255–60.

    PubMed  Google Scholar 

  67. Clin J, Aubin CE, Labelle H. Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Biol Eng Comput 2007;45:467–73.

    Article  PubMed  Google Scholar 

  68. Clin J, Aubin CE, Parent S, et al. Comparison of the biomechanical 3D efficiency of different brace designs for the treatment of scoliosis using a finite element model. Eur Spine J 2010;19:1169–78.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Clin J, Aubin CE, Sangole A, et al. Correlation between immediate in-brace correction and biomechanical effectiveness of brace treatment in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2010;35:1706–13.

    Article  Google Scholar 

  70. Clin J, Aubin C-E, Parent S, Labelle H. Biomechanical modeling of brace treatment of scoliosis: effects of gravitational loads. Med Biol Eng Comput 2011;49:743–53.

    Article  PubMed  Google Scholar 

  71. Desbiens-Blais F, Clin J, Parent S, et al. New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis. Clin Biomech (Bristol, Avon) 2012;27:999–1005.

    Article  Google Scholar 

  72. Liao YC, Feng CK, Tsai MW, et al. Shape modification of the Boston brace using a finite-element method with topology optimization. Spine (Phila Pa 1976) 2007;32:3014–9.

    Article  Google Scholar 

  73. Nie WZ, Ye M, Liu ZD, Wang CT. The patient-specific brace design and biomechanical analysis of adolescent idiopathic scoliosis. J Biomech Eng 2009; 131:7.

    Article  Google Scholar 

  74. Berteau JP, Pithioux M, Mesure S, et al. Beyond the classic correction system: a numerical nonrigid approach to the scoliosis brace. Spine J 2011;11:424–31.

    Article  PubMed  Google Scholar 

  75. Noone G, Mazumdar J, Kothiyal KP, et al. Biomechanical simulations of scoliotic spinal deformity and correction. Australas Phys Eng Sci Med 1993;16:63–74.

    CAS  PubMed  Google Scholar 

  76. Liu CL, Kao HC, Wang ST, et al. Biomechanical evaluation of a central rod system in the treatment of scoliosis. Clin Biomech 1998;13:548–59.

    Article  Google Scholar 

  77. Grealou L, Aubin CE, Labelle H. Biomechanical evaluation of rib cage surgery in scoliosis using finite element modeling. Arch Physiol Biochem 2000;108:192.

    Google Scholar 

  78. Grealou L, Aubin CE, Sevastik JA, Labelle H. Simulations of rib cage surgery for the management of scoliotic deformities. Stud Health Technol Inform 2002;88:345–9.

    CAS  PubMed  Google Scholar 

  79. Driscoll CR, Aubin CE, Canet F, et al. Impact of prone surgical positioning on the scoliotic spine. J Spinal Disord Tech 2012;25:173–81.

    Article  PubMed  Google Scholar 

  80. Driscoll C, Aubin CE, Canet F, et al. Biomechanical study of patient positioning influence of lower limb positioning on spinal geometry. J Spinal Disord Techn 2010;25:69–76.

    Article  Google Scholar 

  81. Lalonde NM, Aubin CE, Pannetier R, Villemure I. Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis: preliminary results. Stud Health Technol Inform 2008;140:111–5.

    CAS  PubMed  Google Scholar 

  82. Abolaeha OA, Weber J, Ross LT. Finite element simulation of a scoliotic spine with periodic adjustments of an attached growing rod. Conf Proc IEEE Eng Med Biol Soc 2012;2012:5781–5.

    CAS  Google Scholar 

  83. Salmingo R, Tadano S, Fujisaki K, et al. Corrective force analysis for scoliosis from implant rod deformation. Clin Biomech (Bristol, Avon) 2012;27:545–50.

    Article  Google Scholar 

  84. Salmingo RA, Tadano S, Fujisaki K, et al. Relationship of forces acting on implant rods and degree of scoliosis correction. Clin Biomech (Bristol, Avon) 2013;28:122–8.

    Article  Google Scholar 

  85. Vanderby R, Daniele M, Patwardhan A, Bunch W. A method for the identification of in vivo segmental stiffness properties of the spine. J Biomech Eng 1986;108:312–6.

    Article  PubMed  Google Scholar 

  86. Perie D, De Gauzy JS, Baunin C, Hobatho MC. Tomodensitometry measurements for in vivo quantification of mechanical properties of scoliotic vertebrae. Clin Biomech 2001;16:373–9.

    Article  CAS  Google Scholar 

  87. Perie D, Hobatho MC, Baunin C, et al. Personalised mechanical properties of scoliotic vertebrae determined in vivo using tomodensitometry. Comput Methods Biomech Biomed Eng 2002;5:161–5.

    Article  CAS  Google Scholar 

  88. Perie D, De Gauzy JS, Baunin C, Hobatho MC. In vivo quantitative analysis of scoliotic vertebrae. Stud Health Technol Inform 2002;88:405–9.

    CAS  PubMed  Google Scholar 

  89. Lafon Y, Lafage V, Dubousset J, et al. Identification of in-vivo spinal stiffness for a global 3-D finite element model. Arch Physiol Biochem 2003;111(Suppl S): 64.

    CAS  Google Scholar 

  90. Cheng FH, Shih SL, Chou WK, et al. Finite element analysis of the scoliotic spine under different loading conditions. Biomed Mater Eng 2010;20:251–9.

    PubMed  Google Scholar 

  91. Sham ML, Zander T, Rohmann A, Bergmann G. Effects of the rib cage on thoracic spine flexibility. Biomedizinische Technik 2005;50:361–5.

    Article  CAS  PubMed  Google Scholar 

  92. Little JP, Adam CJ. The effect of soft tissue properties on spinal flexibility in scoliosis biomechanical simulation of fulcrum bending. Spine (Phila Pa 1976) 2009;34:E76–82.

    Article  Google Scholar 

  93. Meijer GJM, Homminga J, Veldhuizen AG, Verkerke GJ. Influence of interpersonal geometrical variation on spinal motion segment stiffness implications for patient-specific modeling. Spine (Phila Pa 1976) 2011;36:E929–35.

    Article  Google Scholar 

  94. Jones AC, Wilcox RK. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Phys 2008;30:1287–304.

    Article  PubMed  Google Scholar 

  95. Aubin CE, Descrimes JL, Dansereau J, et al. Geometrical modeling of the spine and thorax for biomechanical analysis of scoliotic deformities using finite-element method. Ann Chirurg 1995;49:749–61.

    CAS  Google Scholar 

  96. Mitulescu A, Semaan I, De Guise JA, et al. Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 2001;39:152–8.

    Article  CAS  PubMed  Google Scholar 

  97. Pomero V, Mitton D, Laporte S, et al. Fast accurate stereoradiographic 3D-reconstraction of the spine using a combined geometric and statistic model. Clin Biomech 2004;19:240–7.

    Article  Google Scholar 

  98. Silva MJ, Keaveny TM, Hayes WC. Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res 1998;16:300–8.

    Article  CAS  PubMed  Google Scholar 

  99. Panjabi MM, Brand RA, White AA. 3-Dimensional flexibility and stiffness properties of human thoracic spine. J Biomech 1976;9:185.

    Article  CAS  PubMed  Google Scholar 

  100. Lafon Y, Lafage V, Steib JP, et al. In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests. Spine (Phila Pa 1976) 2010;35:186–93.

    Article  Google Scholar 

  101. Erdemir A, Guess TM, Halloran J, et al. Considerations for reporting finite element analysis studies in biomechanics. J Biomech 2012;45:625–33.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Qiu T-X, Teo E-C. Finite element modeling of human thoracic spine. J Musculoskel Res 2004;8:133–44.

    Article  Google Scholar 

  103. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec 1987;219:1–9.

    Article  CAS  PubMed  Google Scholar 

  104. Delorme S, Petit Y, de Guise JA, et al. Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 2003;50:989–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhai Wang PhD.

Additional information

Author disclosures: WW (none); GB (consultancy for DePuy Synthes Spine and Globus Medical; stock/stock options from Globus Medical); RB (consultancy with DePuy Synthes Spine, Orthocon, SpineGuard, Medtronic; payment for lectures including service on speakers bureaus for DePuy Synthes Spine; royalties from DePuy Synthes Spine and Medtronic; stock/stock options from SpineGuard, MiMedx, Orthocon, Orthobond); AS (consultancy for DePuy Synthes Spine, Zimmer Spine, SpineGuard, Stryker); JP (consultancy with DePuy Synthes Spine); PC (consultancy for DePuy Synthes Spine and Medtronic; grant from DePuy Synthes Spine; payment for lectures including service on speakers bureaus from DePuy Synthes Spine and Medtronic).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Baran, G.R., Betz, R.R. et al. The Use of Finite Element Models to Assist Understanding and Treatment For Scoliosis: A Review Paper. Spine Deform 2, 10–27 (2014). https://doi.org/10.1016/j.jspd.2013.09.007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jspd.2013.09.007

Keywords

Navigation