Skip to main content
Log in

Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Over the last century the neurocentral junction (NCJ) has been identified as a potential cause of adolescent idiopathic scoliosis (AIS). Disparate growth at this site has been thought to lead to pedicle asymmetry, which then causes vertebral rotation and ultimately, the development of scoliotic curves. The objectives of this study are (1) to incorporate pedicle growth and growth modulation into an existing finite element model of the thoracic and lumbar spine already integrating vertebral body growth and growth modulation; (2) to use the model to investigate whether pedicle asymmetry, either alone or combined with other deformations, could be involved in scoliosis pathomechanisms. The model was personalized to the geometry of a nonpathological subject and used as the reference spinal configuration. Asymmetry of pedicle geometry (i.e. initial length) and asymmetry of the pedicle growth rate alone or in combination with other AIS potential pathogenesis (anterior, lateral, or rotational displacement of apical vertebra) were simulated over a period of 24 months. The Cobb angle and local scoliotic descriptors (wedging angle, axial rotation) were assessed at each monthly growth cycle. Simulations with asymmetrical pedicle geometry did not produce significant scoliosis, vertebral rotation, or wedging. Simulations with asymmetry of pedicle growth rate did not cause scoliosis independently and did not amplify the scoliotic deformity caused by other deformations tested in the previous model. The results of this model do not support the hypothesis that asymmetrical NCJ growth is a cause of AIS. This concurs with recent animal experiments in which NCJ growth was unilaterally restricted and no scoliosis, vertebral wedging, or rotation was noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aubin CE, Descrimes JL, Dansereau J, Skalli W, Lavaste F, Labelle H (1995) Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method. Ann Chir 49:749–761

    PubMed  CAS  Google Scholar 

  2. Beguiristain JL, De Salis J, Oriaifo A, Canadell J (1980) Experimental scoliosis by epiphysiodesis in pigs. Int Orthop 3:317–321

    Article  PubMed  CAS  Google Scholar 

  3. Carrier J, Aubin CE, Villemure I, Labelle H (2004) Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput 42:541–548

    Article  PubMed  CAS  Google Scholar 

  4. Coillard C, Rhalmi S, Rivard CH (1999) Experimental scoliosis in the minipig: study of vertebral deformations. Ann Chir 53:773–780

    PubMed  CAS  Google Scholar 

  5. Delorme S, Petit Y, de Guise JA, Labelle H, Aubin CE, Dansereau J (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 50:989–998

    Article  PubMed  CAS  Google Scholar 

  6. Descrimes JL, Aubin CE, Boudreault F, Skalli W, Zeller R, Dansereau J, Lavaste F (1995) Modelling of facet joints in a global finite element model of the spine: mechanical aspects. Three dimensional analysis of spinal deformities. IOS Press, pp 107–112

  7. Diméglio A, Bonnel F (1990) Le rachis en croissance: scoliose, taille assise et puberté. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Knutsson F (1963) A contribution to the discussion of the biological cause of idiopathic scoliosis. Acta Orthop Scand 33:98–104

    Google Scholar 

  9. Michelsson JE (1963) The development of spinal deformity in experimental scoliosis. Acta Orthop Scand 33:91–97

    Google Scholar 

  10. Morrissy R, Weinstein SL (2001) Lovell and Winter’s pediatric orthopaedics. Williams & Wilkins, Philadelphia

    Google Scholar 

  11. Nachemson A (1964) The load on lumbar disks in different positions of the body. Clin Orthop 45:107–122

    Google Scholar 

  12. Nicoladoni C (1909) Anatomie und mechanismus der skoliose. Urban and Scwarzenburg, Munchen

    Google Scholar 

  13. Ottander HG (1963) Experimental progressive scoliosis in a pig. Acta Orthop Scand 33:91–97

    Google Scholar 

  14. Parent S, Labelle H, Skalli W, de Guise J (2004) Vertebral wedging characteristic changes in scoliotic spines. Spine 29:E455–E462

    Article  PubMed  Google Scholar 

  15. Rajwani T, Bhargava R, Moreau M, Mahood J, Raso VJ, Jiang H, Bagnall KM (2002) MRI characteristics of the neurocentral synchondrosis. Pediatr Radiol 32:811–816

    Article  PubMed  CAS  Google Scholar 

  16. Rajwani T, Huang EM, Clark M, Secretan C, Woo A, Bhargava R, Moreau M, Lambert R, Videman T, Bagnall KM (2004) Using a porcine model to explore asymmetric pedicle growth as a cause of scoliosis. Research into spinal deformities 5. IOS Press, pp 95–98

  17. Roaf R (1966) The basic anatomy of scoliosis. J Bone Joint Surg Br 48:786–792

    PubMed  CAS  Google Scholar 

  18. Russell GG, Raso VJ, Hill D, McIvor J (1990) A comparison of four computerized methods for measuring vertebral rotation. Spine 15:24–27

    Article  PubMed  CAS  Google Scholar 

  19. Schultz A, Andersson GB, Ortengren R, Bjork R, Nordin M (1982) Analysis and quantitative myoelectric measurements of loads on the lumbar spine when holding weights in standing postures. Spine 7:390–397

    Article  PubMed  CAS  Google Scholar 

  20. Sevastik B, Xiong B, Sevastik J, Hedlund R, Suliman I (1995) Vertebral rotation and pedicle length asymmetry in the normal adult spine. Eur Spine J 4:95–97

    Article  PubMed  CAS  Google Scholar 

  21. Stokes IA (2002) Mechanical effects on skeletal growth. J Musculoskelet Neuronal Interact 2:277–280

    PubMed  CAS  Google Scholar 

  22. Stokes IA, Aronsson DD, Spence H, Iatridis JC (1998) Mechanical modulation of intervertebral disc thickness in growing rat tails. J Spinal Disord 11:261–265

    Article  PubMed  CAS  Google Scholar 

  23. Stokes IA, Bigalow LC, Moreland MS (1986) Measurement of axial rotation of vertebrae in scoliosis. Spine 11:213–218

    Article  PubMed  CAS  Google Scholar 

  24. Stokes IA, Laible JP (1990) Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech 23:589–595

    Article  PubMed  CAS  Google Scholar 

  25. Stokes IA, Spence H, Aronsson DD, Kilmer N. (1996) Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine 21:1162–1167

    Article  PubMed  CAS  Google Scholar 

  26. Taylor JR (1975) Growth of human intervertebral discs and vertebral bodies. J Anat 120:49–68

    PubMed  CAS  Google Scholar 

  27. Taylor JR (1983) Scoliosis and growth. Patterns of asymmetry in normal vertebral growth. Acta Orthop Scand 54:596–602

    Article  PubMed  CAS  Google Scholar 

  28. Villemure I, Aubin CE, Dansereau J, Labelle H (2002) Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation. J Biomech Eng 124:784–790

    Article  PubMed  CAS  Google Scholar 

  29. Villemure I, Aubin CE, Dansereau J, Labelle H (2004) Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J 13:83–90

    Article  PubMed  CAS  Google Scholar 

  30. Vital JM, Beguiristain JL, Algara C, Villas C, Lavignolle B, Grenier N, Senegas J (1989) The neurocentral vertebral cartilage: anatomy, physiology and physiopathology. Surg Radiol Anat 11:323–328

    Article  PubMed  CAS  Google Scholar 

  31. White AA III (1971) Kinematics of the normal spine as related to scoliosis. J Biomech 4:405–411

    Article  PubMed  Google Scholar 

  32. Yamazaki A, Mason DE, Caro PA (1998) Age of closure of the neurocentral cartilage in the thoracic spine. J Pediatr Orthop 18:168–172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (CIHR), the CIHR Training Program in Mobility and Posture Disorders, the Alberta Provincial CIHR Training Program in Bone and Joint Health, the Réseau Provincial de Recherche en Adaptation-Réadaptation, and the Alberta Heritage Foundation for Medical Research. The scientific and technical assistance of Josée Carrier is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Eric Aubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huynh, AM., Aubin, CE., Rajwani, T. et al. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J 16, 523–529 (2007). https://doi.org/10.1007/s00586-006-0235-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0235-4

Keywords

Navigation