Skip to main content
Log in

Focal hyperthermia produces progressive tumor necrosis independent of the initial thermal effects

  • Published:
Journal of Gastrointestinal Surgery

Abstract

Focal hyperthermia, produced using laser, radio frequency, and microwave, is used to treat liver tumors. The exact mechanisms of tissue destruction using focal hyperthermia are, however, unknown. Clinical and experimental studies suggest a progression of injury after cessation of the initial heat stimulus. This study investigates the mechanisms and time sequence of progressive tissue necrosis induced using focal hyperthermia in a murine model of colorectal liver metastases. Focal hyperthermia produced using a neodymium-yttrium aluminum garnet (Nd-YAG) laser source was applied to the normal liver and colorectal cancer liver metastases in inbred male CBA strain mice. The extent of direct lethal thermal injury was assessed histochemically using vital stain for nicotinamide adenine dinucleotide (NADH) diaphorase immediately after laser application. Tissue injury at subsequent time points was assessed using both NADH diaphorase staining and routine histology to determine the temporal relationship between tissue necrosis and time. Thermal injury occurring immediately after the application of 100 joules of energy was greater in the tumor tissue than in the normal liver (mean [standard error of the mean (SEM)]), measuring 23.5 (3.4) and 16.3 (2.6) mm3, respectively (P = 0.046), despite similar tissue temperature profiles. There was a significant increase in tissue necrosis after initial injury that was greater in the normal liver than in the tumor tissue. In the normal liver, the peak volume of necrosis was 137.4 (9.8) mm3 and occurred at 3 days, whereas in the tumor tissue the peak was 49.0 (3.5) mm3 at 4.5 days (P < 0.001). Focal hyperthermia produces tissue necrosis that occurs in two phases. The first phase is caused by the direct lethal thermal injury followed by a second phase involving a progression of necrosis beyond the initial thermal effects. The normal liver and the tumor tissue responded differently to focal hyperthermia. In the tumor tissue, the direct injury is more pronounced, whereas the progression of injury is more rapid and extensive in the normal liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen PJ, Jarnagin WR. Current status of hepatic resection. Adv Surg 2003;37:29–49.

    PubMed  Google Scholar 

  2. Abdalla EK, Vauthey JN, Ellis LM, et al. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 2004;239:818–825; discussion 825–817.

    Article  PubMed  Google Scholar 

  3. Curley SA, Cusack JC Jr, Tanabe KK, et al. Advances in the treatment of liver tumors. Curr Probl Surg 2002;39:449–571.

    Article  PubMed  Google Scholar 

  4. Shetty SK, Rosen MP, Raptopoulos V, et al. Cost-effectiveness of percutaneous radiofrequency ablation for malignant hepatic neoplasms. J Vasc Interv Radiol 2001;12:823–833.

    Article  PubMed  CAS  Google Scholar 

  5. Nikfarjam M, Christophi C. Interstitial laser thermotherapy for liver tumours. Br J Surg 2003;90:1033–1047.

    Article  PubMed  CAS  Google Scholar 

  6. Erce C, Parks RW. Interstitial ablative techniques for hepatic tumours. Br J Surg 2003;90:272–289.

    Article  PubMed  CAS  Google Scholar 

  7. Vogl TJ, Straub R, Eichler K, et al. Colorectal carcinoma metastases in liver: Laser-induced interstitial thermotherapy —Local tumor control rate and survival data. Radiology 2004;230:450–458.

    Article  PubMed  Google Scholar 

  8. Matthewson K, Coleridge-Smith P, O’Sullivan JP, et al. Biological effects of intrahepatic neodymium:yttrium-aluminumgarnet laser photocoagulation in rats. Gastroenterology 1987; 93:550–557.

    PubMed  CAS  Google Scholar 

  9. Matsumoto R, Selig AM, Colucci VM, et al. Interstitial Nd:YAG laser ablation in normal rabbit liver: Trial to maximize the size of laser-induced lesions. Lasers Surg Med 1992; 12:650–658.

    Article  PubMed  CAS  Google Scholar 

  10. Sweetland HM, Wyman A, Rogers K. Evaluation of the effect on the normal liver of interstitial laser hyperthermia using arti.cial sapphire probes. Lasers Med Sci 1993;8:99–105.

    Article  Google Scholar 

  11. Wiersinga WJ, Jansen MC, Straatsburg IH, et al. Lesion progression with time and the effect of vascular occlusion following radiofrequency ablation of the liver. Br J Surg 2003; 90:306–312.

    Article  PubMed  CAS  Google Scholar 

  12. Kuruppu D, Christophi C, Bertram JF, et al. Characterization of an animal model of hepatic metastasis. J Gastroenterol Hepatol 1996;11:26–32.

    PubMed  CAS  Google Scholar 

  13. Kuruppu D, Christophi C, O’Brien PE. Microvascular architecture of hepatic metastases in a mouse model. Hepato Pancreato Biliary Surg 1997;10:149–157; discussion 158.

    CAS  Google Scholar 

  14. Nikfarjam M, Muralidharan V, Malcontenti-Wilson C, et al. Scanning electron microscopy study of the blood supply of human colorectal liver metastases. Eur J Surg Oncol 2003; 29:856–861.

    Article  PubMed  CAS  Google Scholar 

  15. Neumann RA, Knobler RM, Leonhartsberger H, et al. Histochemical evaluation of the coagulation depth after argon laser impact on a port-wine stain. Lasers Surg Med 1991; 11:606–615.

    Article  PubMed  CAS  Google Scholar 

  16. Heisterkamp J, van Hillegersberg R, Zondervan PE, et al. Metabolic activity and DNA integrity in human hepatic metastases after interstitial laser coagulation (ILC). Lasers Surg Med 2001;28:80–86.

    Article  PubMed  CAS  Google Scholar 

  17. Welch AJ, Motamedi M, Rastegar S, et al. Laser thermal ablation. Photochem Photobiol 1991;53:815–823.

    PubMed  CAS  Google Scholar 

  18. Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol 1991;53:825–835.

    PubMed  CAS  Google Scholar 

  19. Overgaard J, Suit HD. Time-temperature relationship in hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res 1979;39:3248–3253.

    PubMed  CAS  Google Scholar 

  20. van Hillegersberg R, de Witte MT, Kort WJ, et al. Waterjet-cooled Nd:YAG laser coagulation of experimental liver metastases: Correlation between ultrasonography and histology. Lasers Surg Med 1993;13:332–343.

    Article  PubMed  Google Scholar 

  21. Decker T, Lohmann-Matthes ML, Karck U, et al. Comparative study of cytotoxicity, tumor necrosis factor, and prostaglandin release after stimulation of rat Kupffer cells, murine Kupffer cells, and murine inflammatory liver macrophages. J Leukoc Biol 1989;45:139–146.

    PubMed  CAS  Google Scholar 

  22. Dickson JA, Calderwood SK. Temperature range and selective sensitivity of tumors to hyperthermia: A critical review. Ann NY Acad Sci 1980;335:180–205.

    Article  PubMed  CAS  Google Scholar 

  23. Castren-Persons M, Schroder T, Lehtonen E. Sensitivity to Nd:YAG induced laserthermia is a cell-type-specific feature not directly related to tumorigenic potential or proliferation rate. Lasers Surg Med 1996;18:420–428.

    Article  PubMed  CAS  Google Scholar 

  24. Song CW. Effect of local hyperthermia on blood flow andmicroenvironment: A review. Cancer Res 1984;44:4721s-4730s.

    PubMed  CAS  Google Scholar 

  25. Decker K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 1990;192:245–261.

    Article  PubMed  CAS  Google Scholar 

  26. Kelleher DK, Engel T, Vaupel PW. Changes in microregional perfusion, oxygenation, ATP and lactate distribution in subcutaneous rat tumours upon water-filtered IR-A hyperthermia. Int J Hyperthermia 1995;11:241–255.

    PubMed  CAS  Google Scholar 

  27. Germer CT, Albrecht D, Roggan A, et al. Experimental study of laparoscopic laser-induced thermotherapy for liver tumours. Br J Surg 1997;84:317–320.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Christophi M.D., F.R.A.C.S., F.A.C.S..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikfarjam, M., Malcontenti-Wilson, C. & Christophi, C. Focal hyperthermia produces progressive tumor necrosis independent of the initial thermal effects. J Gastrointest Surg 9, 410–417 (2005). https://doi.org/10.1016/j.gassur.2004.07.008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.gassur.2004.07.008

Key words

Navigation