Skip to main content
Log in

Energy-efficient bio-inspired gait planning and control for biped robot based on human locomotion analysis

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot walking were obtained from the extracted human gait features. Based on the modifiable key gait parameters and the Allowable Zero Moment Point (ZMP) Variation Region (AZR), we proposed an effective Bio-inspired Gait Planning (BGP) and control scheme for biped robot towards a given travel distance D. First, we construct an on-line Bio-inspired Gait Synthesis algorithm (BGSN) to generate a complete walking gait motion using the modifiable key gait parameters. Second, a Bio-inspired Gait Parameters Optimization algorithm (BGPO) is established to minimize the energy consumption of all actuators and guarantee biped robot walking with certain walking stability margin. Third, the necessary controllers for biped robot were introduced in briefly. Simulation and experiment results demonstrated the effectiveness of the proposed method, and the gait control system was implemented on DRC-XT humanoid robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuo D. Choosing your steps carefully. IEEE Robotics & Automation. Magazine, 2007, 14, 18–29.

    Article  Google Scholar 

  2. Hirai K. The Honda humanoid robot: Development and future perspective. Industrial Robot, 1999, 26, 260–266.

    Article  Google Scholar 

  3. Park I, Kim J, Oh J. Online walking pattern generation and its application to a biped humanoid robot-KHR-3(HUBO). Journal of Advanced Robotics, 2007, 22, 159–190.

    Article  Google Scholar 

  4. Kaneko K, Kanehiro F, Kajita S, Yokoyama K, Akachi K, Kawasaki T, Ota S, Isozumi T. Design of prototype humanoid robotics platform for HRP. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 2002, 3, 2431–2436.

    Article  Google Scholar 

  5. Öberg T. Motion analysis in clinical biomechanics. Biomechanics of Musculoskeletal System-Medical Robotics, Polish Academy of Science, Warsaw, 2000.

    Google Scholar 

  6. Vukobratovic M, Frank A A, Juricic D. On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering, 1970, 17, 25–36.

    Article  Google Scholar 

  7. Kajita S, Kanehiro F, Kaneko K. The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, Havaii, USA, 2001, 239–246.

    Google Scholar 

  8. Kajita S, Kanehiro F, Kaneko K. Biped walking pattern generation by using preview control of zero-moment point. IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, 2003a, 1620–1626.

    Google Scholar 

  9. Kajita S, Morisawa M, Miura K. Biped walking stabilization based on linear inverted pendulum tracking. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010, 4489–4496.

    Google Scholar 

  10. Luo X, Xu W L. Planning and control for passive dynamics based walking of 3D biped robots. Journal of Bionic Engineering, 2012, 9, 143–155.

    Article  Google Scholar 

  11. Huang Q, Yokoi K. Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, 2001, 6, 280–289.

    Article  Google Scholar 

  12. Xu W, Huang Q, Li J, Yu Z, Chen X, Xu Q. An improved ZMP trajectory design for the biped robot BHR. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011, 569–574.

    Google Scholar 

  13. Santacruz C, Nakamura Y. Analytical real-time pattern generation for trajectory modification and footstep replanning of humanoid robots. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 2012, 2095–2100.

    Google Scholar 

  14. Goswami D, Prahlad V, Kien P D. Genetic algorithm-based optimal bipedal walking gait synthesis considering tradeoff between stability margin and speed. Robotica, 2009, 27, 355–365.

    Article  Google Scholar 

  15. Dau V H, Chew C, Poo A. Achieving energy-efficient biped walking trajectory through GA-based optimization of key parameters. International Journal of Humanoid Robotics, 2009, 6, 609–629.

    Article  Google Scholar 

  16. Liu Z, Wang L, Philip Chen C L, Zeng X, Zhang Y, Wang Y. Energy-efficiency-based gait control system architecture and algorithm for biped robots. IEEE Transactions on Systems Man and Cybernetics Part C (Applications and Reviews), 2012, 42, 926–933.

    Article  Google Scholar 

  17. Hyeok-Ki Shin, Byung Kook Kim. Energy-efficient gait planning and control for biped robots utilizing the allowable ZMP region. IEEE Transactions on Robotics, 2014, 30, 986–993.

    Article  Google Scholar 

  18. Shimmyo S, Sato T, Ohinishi K. Biped walking pattern generation by using preview control based on three-mass model. IEEE Transactions on Industrial Electronics, 2013, 61, 5137–5147.

    Article  Google Scholar 

  19. Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H. Biped walking pattern generation by using preview control of zero-moment point. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Taipei, 2003, 1620–1626.

    Google Scholar 

  20. Geng T, Porr B, Wrgtter F. Fast biped walking with a sensor- driven neuronal controller and real-time online learning. International Journal of Robotics Research, 2006, 25, 243–259.

    Article  Google Scholar 

  21. Tzuu-Hseng S Li, Yu-Te Su, Shao-Hsien Liu, Jhen-Jia Hu, Ching-Chang Chen. Dynamic balance control for biped robot walking using sensor fusion, Kalman filter, and fuzzy logic. IEEE Transactions on Industrial Electronics, 2012, 59, 4394–4408.

    Article  Google Scholar 

  22. Ren L, Qian Z H, R L Q. Biomechanics of musculoskeletal system and its bio-mimetic implications: A review. Journal of Bionic Engineering, 2014, 11, 159–175.

    Article  Google Scholar 

  23. Li T, Marco Ceccarelli, Minzhou Luo, Med Amine Laribi, Said Zeghloul. An experimental analysis of overcoming obstacle in human walking. Journal of Bionic Engineering, 2014, 11, 497–505.

    Article  Google Scholar 

  24. Vanderborght B, Verrelst V, Ham R V, Damme M V, Lefeber D. Objective locomotion parameters based inverted pendulum trajectory generator. Robotics and Autonomous systems, 2008, 56, 738–750.

    Article  Google Scholar 

  25. Luc Boutin, Antoine Eon, Said Zeghloul, Patrick Lacouture. From human motion capture to humanoid locomotion imitation Application to the robots HRP-2 and HOAP-3. Robotica, 2011, 29, 325–334.

    Article  Google Scholar 

  26. Ottaviano E, Ceccarelli M, Palmucci F. An application of CaTraSys, a cable-based parallel measuring system for an experimental characterization of human walking. Robotica, 2010, 28, 119–133.

    Article  Google Scholar 

  27. Chiang M H, Chang F R. Anthropomorphic design of the human-like walking robot. Journal of Bionic Engineering, 2013, 10, 186–193.

    Article  Google Scholar 

  28. Missura M, Behnke S. Lateral capture steps for bipedal walking. Proceedings of IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia, 2011, 401–408.

    Google Scholar 

  29. NDI, http://www.ndigital.com.

  30. Nahon M, Angeles J. Minimization of power losses in cooperating manipulator. Journal of Dynamic Systems, Measurement, and Control. 1992, 114, 213–219.

    Article  MATH  Google Scholar 

  31. Goswami A. Postural stability of biped robots and the foot-rotation indicator (FRI) point. International Journal of Robotics Research, 1999, 18, 523–533.

    Article  Google Scholar 

  32. Zhu C, Byrd R H, Lu P, Nocedal J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software, 1997, 23, 550–560.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Luo, M., Mei, T. et al. Energy-efficient bio-inspired gait planning and control for biped robot based on human locomotion analysis. J Bionic Eng 13, 271–282 (2016). https://doi.org/10.1016/S1672-6529(16)60300-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60300-1

Keyword

Navigation