Skip to main content
Log in

Chaotic CPG based locomotion control for modular self-reconfigurable robot

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The most important feature of Modular Self-reconfigurable Robot (MSRR) is the adaption to complex environments and changeable tasks. A critical difficulty is that the operator should regulate a large number of control parameters of modules. In this paper, a novel locomotion control model based on chaotic Central Pattern Generator (CPG) is proposed. The chaotic CPG could produce various rhythm signals or chaotic signal only by changing one parameter. Utilizing this characteristic, a unified control model capable of switching variable locomotion patterns or generating chaotic motion for modular self-reconfigurable robot is presented. This model makes MSRR exhibit environmental adaptability. The efficiency of the control model is verified through simulation and experiment of UBot MSRR platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukuda T, Nakagawa S. Dynamically reconfigurable robotic system. Proceedings of IEEE International Conference on Robotics and Automation, Philadlphia, USA, 1988, 1581–1586.

    Google Scholar 

  2. Yim M, Duff D G, Roufas K D. PolyBot: A modular reconfigurable robot. Proceedings of the IEEE International Conference on Robots and Automation, San Francisco, USA, 2000, 514–520.

    Google Scholar 

  3. Yim M, Zhang Y, Duff D. Modular robots. IEEE Spectrum. 2002, 39, 30–34.

    Article  Google Scholar 

  4. Yim M, Shen W M, Salemi B, Rus D, Moll M, Lipson H, Klavins E, Chirikjian G S. Modular self-reconfigurable robot systems: Challenges and opportunities for the future. IEEE Robotics & Automation Magazine, 2007, 3, 43–52.

    Article  Google Scholar 

  5. Shen W M, Salemi B, Will P. Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Transactions on Robotics and Automation, 2002, 8, 700–712.

    Article  Google Scholar 

  6. Yoshida E, Murata S, Kamimura A, Tomita K, Kurokawa H, Kokaji S. Self-reconfigurable modular robots-hardware and software development in AIST. Proceedings of the IEEE International Conference on Robotics, Intelligent Systems and Signal, Changsha, China, 2003, 339–346.

    Google Scholar 

  7. Kurokawa H, Tomita K, Kamimura A, Kokaji S, Hasuo T, Murata S. Self-reconfigurable modular robot M-TRAN: Distributed control and communication. Proceedings of the 1st international conference on Robot communication and coordination table of contents, Athens, Greece, 2007.

    Google Scholar 

  8. Kurokawa H, Yoshida E, Tomita K, Kamimura A, Murata S, Kokaji S. Self-reconfigurable M-TRAN structures and walker generation. Robotics and Autonomous Systems, 2006, 54, 142–149.

    Article  Google Scholar 

  9. Murata S, Kurokawa H. Self-reconfigurable robots: Shape-changing cellular robots can exceed conventional robot flexibility. IEEE Robotics & Automation Magazine, 2007, 71–78.

    Google Scholar 

  10. Kurokawa H, Tomita K, Kamimura A, Kokaji S, Hasuo T, Murata S. Distributed self-reconfiguration of M-TRAN III modular robotic system. The International Journal of Robotics Research, 2008, 373–385.

    Google Scholar 

  11. Yoshida E, Kokaji S, Murata S, Tomita K, Kurokawa H. Micro self-reconfigurable robot using shape memory alloy. Journal of Robotics and Mechatronics, 2001, 13, 212–219.

    Article  MATH  Google Scholar 

  12. Shen W M, Krivokon M, Chiu H, Everist J, Rubenstein M, Venkatesh J. Multimode locomotion via superBot robots. Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006, 2552–2557.

    Google Scholar 

  13. Salemi B, Moll M, Shen W M. SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, Chain, 2006, 3636–3641.

    Google Scholar 

  14. Maye J. Control of Locomotion in Modular Robotics, Master Thesis, Biologically Inspired Robotics Group, Ecole Polytechnique Federale de Lausanne, Switzerland, 2007.

    Google Scholar 

  15. Moeckel R, Jaquier C, Drape K, Dittrich E, Upequi A, Ijspeert A J. Exploring adaptive locomotion with YaMoR, a novel autonomous modular robot with Bluetooth interface. Industrial Robot, 2006, 33, 285–290.

    Article  Google Scholar 

  16. Butler Z, Kotay K, Rus D, Tomita K. Generic decentralized control for a class of self-reconfigurable robots. Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 2002, 809–816.

    Google Scholar 

  17. Shen W M, Salemi B, Will P. Hormones for self-reconfigurable robots. Proceedings of the 6th International Conference on Intelligent Autonomous Systems, Venice, Italy, 2000.

    Google Scholar 

  18. Delcomyn F. Neural basis of rhythmic behaviour in animals. Science, 1980, 210, 492–498.

    Article  Google Scholar 

  19. Ijspeert A J, Crespi A, Ryczko D, Cabelguen J M. From swimming to walking with a salamander robot driven by a spinal cord model. Science, 2007, 315, 1416–1420.

    Article  Google Scholar 

  20. Ijspeert A J. Central pattern generators for locomotion control in animals and robots: A review. Neural Network, 2008, 21, 642–653.

    Article  Google Scholar 

  21. Guertin P A. The mammalian central pattern generator for locomotion. Brain Research Reviews, 2010, 62, 45–56.

    Article  Google Scholar 

  22. Yu J, Tan M, Chen J, Zhang J. A survey on CPG-inspired control models and system implementation. IEEE Transactions on Neural Networks, 2014, 25, 441–456.

    Article  Google Scholar 

  23. Hu Y H, Liang J H, Wang T M. Parameter synthesis of coupled nonlinear oscillators for CPG-Based robotic locomotion. IEEE Transactions on Industrial Electronics, 2014, 61, 6183–6189.

    Article  Google Scholar 

  24. Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 1985, 52, 367–376.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kamimura A, Kurokawa H, Yoshida E, Tomita K, Kokaji S. Distributed adaptive locomotion by a modular robotic system, M-TRAN II. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, 2004, 2370–2377.

    Google Scholar 

  26. Kamimura A, Kurokawa H, Yoshida E. Automatic Locomotion Design and experiments for a modular robotic system. IEEE/ASME Transactions on Mechatronics, 2005, 10, 314–325.

    Article  Google Scholar 

  27. Zhang J Q, Gao F, Han X L, Chen X B, Han X Y. Trot gait design and CPG method for a quadruped robot. Journal of Bionic Engineering, 2014, 11, 18–25.

    Article  Google Scholar 

  28. Li G Y, Zhang H X, Herrero-Carrón F, Hildre H P, Zhang J W. A novel mechanism for caterpillar-like locomotion using asymmetric oscillation. Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary, 2011, 164–169.

    Google Scholar 

  29. Li G Y, Zhang H X, Zhang J W, Hildre H P. An approach for adaptive limbless locomotion using a CPG-based reflex mechanism. Journal of Bionic Engineering, 2014, 11, 389–399.

    Article  Google Scholar 

  30. Li G Y, Li W, Zhang J W, Zhang H X. Analysis and design of asymmetric oscillation for caterpillar-like locomotion, Journal of Bionic Engineering, 2015, 12, 190–203.

    Article  Google Scholar 

  31. Pasemann F, Hild M, Zahedi K. So(2)-networks as neural oscillators. Computational Methods in Neural Modeling, 2003, 2686, 144–151.

    Article  Google Scholar 

  32. Steingrube S, Timme M, Worgotter F. Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Physics, 2010, 17, 224–230.

    Article  Google Scholar 

  33. Ren G J, Chen W H, Dasgupta S, Kolodziejski C, Worgotter F, Manoonpong P. Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation. Information Sciences, 2015, 294, 666–682.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Zhang, Y., Jin, H. et al. Chaotic CPG based locomotion control for modular self-reconfigurable robot. J Bionic Eng 13, 30–38 (2016). https://doi.org/10.1016/S1672-6529(14)60157-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60157-8

Keywords

Navigation