Skip to main content
Log in

Quasi-Static and Dynamic Nanoindentation of Some Selected Biomaterials

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This study details an investigation of the viscoelastic behavior of some biomaterials (nacre, cattle horn and beetle cuticle) at lamellar length scales using quasi-static and dynamic nanoindentation techniques in the materials’ Transverse Direction (TD) and Longitudinal Direction (LD). Our results show that nacre exhibits high fracture toughness moving towards a larger campaniform as the stress frequency varies from 10 Hz to 200 Hz. Elytra cuticle exhibits the least fracture toughness presenting little energy dissipation in TD. It was initially speculated that the fracture toughness of the subject materials would be directly related to energy-dissipating mechanisms (mechanical hysteresis), but not the maximum value of the loss tangent tand. However, it was found that the materials’ elastic modulus and hardness are similar in both the TD and LD when assessed using the quasi-static nanoindentation method, but not dynamic nanoindentation. It is believed that the reported results can be useful in the design of new crack arrest and damping materials based on biological counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhushan B. Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, Springer-Verlag, Heidelberg, Germany, 2012.

    Book  Google Scholar 

  2. Ebensteina D M, Pruitt L A. Nanoindentation of biological materials. Nanotoday, 2006, 1, 26–33.

    Article  Google Scholar 

  3. Pathak S, Swadener J G, Kalidindi S R, Courtland HW, Jepsen K J, Goldman HM. Measuring the dynamic mechanical response of hydrated mouse bone by nanoindenta-tion. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 34–43.

    Article  Google Scholar 

  4. Rettler E, Hoeppener S, Sigusch B W, Schubert U S. Mapping the mechanical properties of biomaterials on different length scales: Depth-sensing indentation and AFM based nanoindentation. Journal of Materials Chemistry B, 2013, 1, 2789–2806.

    Article  Google Scholar 

  5. Donnelly E, Baker S P, Boskey A L, van der Meulen M C H. Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. Journal of Biomedical Materials Research A, 2006, 77, 426–435.

    Article  Google Scholar 

  6. Sun J Y, Tong J. Fracture toughness properties of three different biomaterials measured by nanoindentation. Journal of Bionic Engineering, 2007, 4, 11–17.

    Article  Google Scholar 

  7. Bhushan B. Springer Handbook of Nanotechnology, 3rd ed, Springer-Verlag, Heidelberg, Germany, 2010.

    Book  Google Scholar 

  8. Zhang Y F, Bai S L, Li X K, Zhang Z. Viscoelastic properties of nanosilica-filled epoxy composites investigated by dynamic nanoindentation. Journal of Polymer Science B: Polymer Physics, 2009, 47, 1030–1038.

    Article  Google Scholar 

  9. Loubet J L, Oliver W C, Lucas B N. Measurement of the loss tangent of low-density polyethylene with nanoindentation technique. Journal of Materials Research, 2000, 15, 1195–1198.

    Article  Google Scholar 

  10. Hu K, Radhakrishnan P, Patel R V, Mao J J. Regional structural and viscoelastic properties of fibrocartilage upon dynamic nanoindentation of the articular condyle. Journal of Structural Biology, 2001, 136, 46–52.

    Article  Google Scholar 

  11. Odegard G M, Bandorawalla T, Herring H M, Gates T S. Characterisation of viscoelastic properties of polymeric materials through nanoindentation. Experimental Mechanics, 2005, 45, 130–136.

    Article  Google Scholar 

  12. Bouaita N, Bull S J, Palacio J F, White J R. Dynamic nanoindentation of some polyolefins. Polymer Engineering & Science, 2006, 46, 1160–1172.

    Article  Google Scholar 

  13. Mohanty B, Katti K S, Katti D R, Verma D. Dynamic nanomechanical response of nacre. Journal of Materials Research, 2006, 21, 2045–2051.

    Article  Google Scholar 

  14. Faingold A, Cohen S R, Wagner H D. Nanoindentation of osteonal bone lamellae. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 198–206.

    Article  Google Scholar 

  15. Jeng Y R, Mao C P, Wu K T. Instrumented indentation investigation on the viscoelastic properties of porcine cartilage. Journal of Bionic Engineering, 2013, 10, 522–531.

    Article  Google Scholar 

  16. Pethica J B, Oliver W C. Tip surface interactions in STM and AFM. Physica Scripta, 1987, T19A, 61–66.

    Article  Google Scholar 

  17. Asif S A S, Pethica J B. Nano-scale viscoelastic properties of polymer materials. In: Cammarata R C, Nastasi M, Busso E P, Oliver W C (eds). Thin Films—Stresses and Mechanical Properties, VII ed, Material Research Society Symposium Proceedings, 1998, 505, 103.

    Article  Google Scholar 

  18. Hayes S A, Goruppa A A, Jones F R. Dynamic nanoinden-tation as a tool for the examination of polymeric materials. Journal of Materials Research, 2004, 19, 3298–3306.

    Article  Google Scholar 

  19. Lee C S, Jho J Y, Choi K, Hwang T W. Dynamic mechanical behavior of ultra-high molecular weight polyethylene irradiated with gamma rays. Macromolecular Research, 2004, 12, 141–143.

    Article  Google Scholar 

  20. Park K, Mishra S, Lewis G, Losby J, Fan Z F, Park J B. Quasi-static and dynamic nanoindentation studies on highly crosslinked ultra-high-molecular-weight polyethylene. Biomaterials, 2004, 25, 2427–2436.

    Article  Google Scholar 

  21. Yamashita J, Furman B R, Rawls H R, Wang X, Agrawal C M. The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone. Journal of Biomedical Materials Research Part B, 2001, 58, 47–53.

    Article  Google Scholar 

  22. Tang B, Ngan A H W, Lu W W. An improved method for the measurement of mechanical properties of bone by nanoin-dentation. Journal of Materials Science: Materials in Medicine, 2007, 18, 1875–1881.

    Google Scholar 

  23. Ahearne M, Yang Y, Then K, Liu K. An indentation technique to characterize the mechanical and viscoelastic properties of human and porcine corneas. Annals of Biomedical Engineering, 2007, 35, 1608–1616.

    Article  Google Scholar 

  24. Stempfle P, Pantale O, Njiwa R K, Rousseau M, Lopez E, Bourrat X. Friction-induced sheet nacre fracture: Effects of nano-shocks on cracks location. International Journal of Nanotechnology, 2007, 4, 712–729.

    Article  Google Scholar 

  25. Franke O, Göken M, Hodge A M. The nanoindentation of soft tissue: Current and developing approaches. JOM, 2008, 60, 49–53.

    Article  Google Scholar 

  26. Chen P Y, Lin A Y, Lin Y S, Seki Y, Stokes A G, Peyras J, Olevsky E A, Meyers M A, McKittrick J. Structure and mechanical properties of selected biological materials. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 208–226.

    Article  Google Scholar 

  27. Fratzl P. Hierarchical structure and mechanical adaptation of biological materials. In: Reis R L, Weiner S (eds). Learning from Nature How to Design New Implantable Biomaterials: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes, Kluwer Academic Publishers, New York, USA, 2005, 15–34.

    Chapter  Google Scholar 

  28. Chen Q, Pugno N M. Bio-mimetic mechanisms of natural hierarchical materials: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 3–33.

    Article  Google Scholar 

  29. Yourdkhani M, Pasini D, Barthelat F. Multiscale mechanics and optimization of gastropod shells. Journal of Bionic Engineering, 2011, 8, 357–368.

    Article  Google Scholar 

  30. Richter B I, Kellner S, Menzel H, Behrens P, Denkena B, Ostermeier S, Hurschler C. Mechanical characterization of nacre as an ideal-model for innovative new endoprosthesis materials. Archives of Orthopaedic and Trauma Surgery, 2011, 131, 191–196.

    Article  Google Scholar 

  31. Meyers M A, Chen P Y, Lin A Y M, Seki Y. Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008, 53, 1–206.

    Article  Google Scholar 

  32. Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004, 19, 3–20.

    Article  Google Scholar 

  33. Bobji M S, Biswas S K, Pethica J B. Effect of roughness on the measurement of nanohardness: A computer simulation study. Applied Physics Letters, 1997, 71, 1059–1061.

    Article  Google Scholar 

  34. Enders S, Barbakadse N, Gorb S N, Arzt E. Exploring biological surfaces by nanoindentation. Journal of Materials and Research, 2004, 19, 880–887.

    Article  Google Scholar 

  35. Sun J Y, Tong J, Zhou J. Application of nano-indenter for investigation of the properties of the elytra cuticle of the dung beetle (Copris ochus Motschulsky). IEE Proceedings: Nanobiotechnology, 2006, 153, 129–133.

    Article  Google Scholar 

  36. Katti K S, Katti D R, Mohanty B. Biomimetic lessons learnt from nacre. In: Amitava M (ed). Biomimetics Learning from Nature, InTech, Rijeka, Croatia, 2010, 193–216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyu Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Ling, M., Wang, Y. et al. Quasi-Static and Dynamic Nanoindentation of Some Selected Biomaterials. J Bionic Eng 11, 144–150 (2014). https://doi.org/10.1016/S1672-6529(14)60029-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60029-9

Keywords

Navigation