Skip to main content
Log in

Nanoindentation Stress–Strain for Fracture Analysis and Computational Modeling for Hardness and Modulus

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Stress–Strain plots based on nanoindentation load–depth curves were obtained to study phenomena like internal fracture and ductile to brittle transitions. Fracture phenomena during the indentation process were analyzed based on the stress–strain plots. A transition from ductile to brittle fracture was observed on increasing the depth or load of indenter penetration. A new approach with shape factors in the fracture studies based on radial crack branching and micro-cracking was done. Hardness and modulus plots were fitted with polynomials. The fitting parameters were varied to obtain different hardness and modulus responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A.C. Fischer-Cripps, Nanoindentation, Springer, NewYork, 2004

    Book  Google Scholar 

  2. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564

    Article  Google Scholar 

  3. J. Malzbender, J.M.J. den Toonder, A.R. Balkenende, and G. de With, Measuring Mechanical Properties of Coatings: A Methodology Applied to Nano-Particle-Filled sol–gel Coatings on Glass, Mater. Sci. Eng. Rep., 2002, 36, p 47

    Article  Google Scholar 

  4. R. Abram, D. Chrobak, and R. Nowak, Origin of a Nanoindentation Pop-in Event in Silicon Crystal, Phys. Rev. Lett., 2017, 118, p 095502

    Article  Google Scholar 

  5. S. Wong, B. Haberl, J.S. Williams, and J.E. Bradby, The Influence of Hold Time on the Onset of Plastic Deformation in Silicon, J. Appl. Phys., 2015, 118, p 245904

    Article  Google Scholar 

  6. A.S. Bhattacharyya and S.K. Mishra, Raman Studies on Nanocomposite Silicon Carbonitride Thin Film Deposited by RF Magnetron Sputtering at Different Substrate Temperatures, J. Raman Spectrosc., 2010, 41, p 1234–1239

    Article  Google Scholar 

  7. A.S. Bhattacharyya, S.K. Mishra, and S. Mukherjee, Correlation of Structure and Hardness of RF Magnetron Sputtered Silicon Carbonitride Films, J. Vac. Sci. Technol. A, 2010, 28, p 505–509

    Article  Google Scholar 

  8. A.S. Bhattacharyya, S.K. Mishra, S. Mukherjee, and G.C. Das, A Comparative Study of Si-C-N Films on Different Substrates Grown by RF Magnetron Sputtering, J. Alloys Compd., 2009, 478, p 474–478

    Article  Google Scholar 

  9. A.S. Bhattacharyya, G.C. Das, S. Mukherjee, and S.K. Mishra, Effect of Radio Frequency and Direct Current Modes of Deposition on Protective Metallurgical Hard Silicon Carbon Nitride Coatings by Magnetron Sputtering, Vacuum, 2009, 83, p 1464–1469

    Article  Google Scholar 

  10. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3

    Article  Google Scholar 

  11. Z. Cao and X. Zhang, Nanoindentation Stress–Strain Curves of Plasma-Enhanced Chemical Vapor Deposited Silicon Oxide Thin Films, Thin Solid Films, 2008, 516, p 1941–1951

    Article  Google Scholar 

  12. S. Zhang, H.L. Wang, S.-E. Ong, D. Sun, and X.L. Bui, Hard yet Tough Nanocomposite Coatings—Present Status and Future Trends, Plasma Process. Polym., 2007, 4, p 219–228

    Article  Google Scholar 

  13. A.S. Bhattacharyya, R.P. Kumar, V. Ranjan, and G. Kumar, Nanoindentation and Scratch test of Thin Film Energy Materials, Curr. Smart Mater., 2017, 2, p 39–43

    Google Scholar 

  14. A.S. Bhattacharyya and S.K. Mishra, Micro/Nanomechanical Behavior of Magnetron Sputtered Si-C-N Coatings Through Nanoindentation and Scratch Tests, J. Micromech. Microeng., 2011, 21, p 015011

    Article  Google Scholar 

  15. E. Mart´ınez, J. Romero, A. Lousa, and J. Esteve, Nanoindentation Stress–Strain Curves as a Method for Thin-Film Complete Mechanical Characterization: Application to Nanometric CrN/Cr Multilayer Coatings, Appl. Phys. A, 2003, 77, p 419–426. https://doi.org/10.1007/s00339-002-1669-0

    Article  Google Scholar 

  16. S.K. Mishra, A.S. Bhattacharyya, P. Mahato, and L.C. Pathak, Multicomponent TiSiBC Superhard and Tough Composite Coatings by Magnetron Sputtering, Surface Coat. Technol., 2012, 207, p 19–23

    Article  Google Scholar 

  17. S.J. Bull, Nanoindentation of Coatings, J. Phys. D Appl. Phys., 2005, 38, p R393–R413

    Article  Google Scholar 

  18. J.M.J. den Toonder, J. Malzbender, G. de With, and R. Balkenende, Fracture Toughness and Adhesion Energy of Sol-Gel Coatings on Glass, J. Mater. Res., 2002, 17, p 224

    Article  Google Scholar 

  19. A.S. Bhattacharyya, P. Kumar, N. Rajak, R.P. Kumar, A. Sharma, G. Acharya, and V. Ranjan, Analyzing Time on Sample during Nanoindentation, Mater. Sci. Res. India, 2016, 13(2), p 74–79

    Article  Google Scholar 

  20. Z. Burghard, Behaviour of glasses and polymer-derived amorphous ceramics under contact stress, PhD-Thesis, Max-Planck Institute for Metals Research & University of Stuttgart Germany

  21. Z.D. Sha, Q. Wan, Q.X. Pei, S.S. Quek, Z.S. Liu, Y.W. Zhang, and V.B. Shenoy, On the Failure Load and Mechanism of Polycrystalline Graphene by Nanoindentation, Sci. Rep., 2014, 4, p 7437

    Article  Google Scholar 

  22. N. Cuadrado, J. Seuba, D. Casellas, M. Anglada, and E. Jiménez-Piqué, Geometry of Nanoindentation Cube-Corner Cracks Observed by FIB Tomography: Implication for Fracture Resistance Estimation, J. Eur. Ceram. Soc., 2015, 35, p 2949–2955

    Article  Google Scholar 

  23. A.S. Bhattacharyya, S.K. Mishra, G.C. Das, and S. Mukherjee, Hot Properties, Eur. Coat. J., 2009, 3, p 108–114

    Google Scholar 

  24. Alireza Moradkhani, Hamidreza Baharvandi, Mehdi Tajdari, Hamidreza Latifi, and J. Martikainen, Determination of Fracture Toughness Using the Area of Micro-Crack Tracks Left in Brittle Materials by Vickers Indentation Test, J. Adv. Ceram., 2013, 2(1), p 87–102

    Article  Google Scholar 

  25. S.K. Mishra and A.S. Bhattacharyya, Adhesion and Indentation Fracture Behavior of Silicon Carbonitride Nanocomposite Coatings Deposited by Magnetron Sputtering, Silicon-based Nanomaterials, Springer Series in Materials Science, chap. 10, vol. 187, Springer, New York, 2013, p 215–241

  26. A.S.Bhattacharyya, S Priyadarshi, S. Sonu, S. Shivam, and S. Anshu, Nanoindentation Stress–Strain for Fracture Analysis and Computational Modeling for Hardness and Modulus, arXiv:1704.04525 [cond-mat.mtrl-sci]

Download references

Acknowledgments

The authors acknowledge Dr. S. K. Mishra for carrying out the experimental work at CSIR-National Metallurgical Laboratory, Jamshedpur. The article is self-archived in arXiv.org (Ref 26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bhattacharyya.

Additional information

This article is an invited paper selected from presentations at “ICETINN-2017, International Conference on Emerging Trends in Nanoscience and Nanotechnology,” held March 16–18, 2017, in Majitar, Sikkim, India, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, A.S., Kumar, R.P., Priyadarshi, S. et al. Nanoindentation Stress–Strain for Fracture Analysis and Computational Modeling for Hardness and Modulus. J. of Materi Eng and Perform 27, 2719–2726 (2018). https://doi.org/10.1007/s11665-018-3289-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3289-7

Keywords

Navigation