Skip to main content
Log in

A compact microfluidic laser-induced fluorescence immunoassay system using avalanche photodiode for rapid detection of alpha-fetoprotein

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Alpha-fetoprotein (AFP), commonly employed for early diagnosis of liver cancer, serves as a biomarker for cancer screening and diagnosis. Combining the high sensitivity and specificity of fluorescence immunoassay (FIA), developing a low-cost and efficient immunoassay system for AFP detection holds significant importance in disease diagnosis. In this work, we developed a miniaturized oblique laser-induced fluorescence (LIF) immunoassay system, coupled with a microfluidic PMMA/paper hybrid chip, for rapid detection of AFP. The system employed an avalanche photodiode (APD) as the detector, and implemented multi-level filtering in the excitation light channel using the dichroic mirror and optical trap. At first, we employed the Savitzky–Golay filter and baseline off-set elimination methods to denoise and normalize the original data. Then the cutoff frequency of the low-pass filter and the reverse voltage of the APD were optimized to enhance the detection sensitivity of the system. Furthermore, the effect of laser power on the fluorescence excitation efficiency was investigated, and the sampling time during the scanning process was optimized. Finally, a four-parameter logistic (4PL) model was utilized to establish the concentration–response equation for AFP. The system was capable of detecting concentrations of AFP standard solution within the range of 1–500 ng/mL, with a detection limit of 0.8 ng/mL. The entire immunoassay process could be completed within 15 min. It has an excellent potential for applications in low-cost portable diagnostic instruments for the rapid detection of biomarkers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.G. Singal, P. Lampertico, P. Nahon, J. Hepatol. (2020). https://doi.org/10.1016/j.jhep.2019.08.025

    Article  PubMed  PubMed Central  Google Scholar 

  2. J.A. Marrero et al., Hepatology (2018). https://doi.org/10.1002/hep.29913

    Article  PubMed  Google Scholar 

  3. N. Tsuchiya et al., World J. Gastroenterol: WJG (2015). https://doi.org/10.3748/wjg.v21.i37.10573

    Article  PubMed  PubMed Central  Google Scholar 

  4. D.S. Mandlik, S.K. Mandlik, H.B. Choudhary, World J. Gastroenterol. (2023). https://doi.org/10.3748/wjg.v29.i6.1054

    Article  PubMed  PubMed Central  Google Scholar 

  5. P. Johnson, Q. Zhou, D.Y. Dao, Y.M. Dennis Lo, Nat (Gastroenterol. Hepatol, Rev, 2022). https://doi.org/10.1038/s41575-022-00620-y

    Book  Google Scholar 

  6. A. Mohammadinejad et al., TrAC, Trends Anal. Chem. (2020). https://doi.org/10.1016/j.trac.2020.115961

    Article  Google Scholar 

  7. L. Syedmoradi et al., Talanta (2021). https://doi.org/10.1016/j.talanta.2020.122002

    Article  PubMed  Google Scholar 

  8. U. Kuzmanov, H. Kosanam, E.P. Diamandis, BMC Med. (2013). https://doi.org/10.1186/1741-7015-11-31

    Article  PubMed  PubMed Central  Google Scholar 

  9. S.K. Arya, P. Estrela, Sensors. (2018). https://doi.org/10.3390/s18072010

    Article  PubMed  PubMed Central  Google Scholar 

  10. H.M. Shafik, S.M. Ayoub, N.H. Ebeid, H.H. Someda, J. Radioanal. Nuclear Chem. (2014). https://doi.org/10.1007/s10967-014-3155-5

    Article  Google Scholar 

  11. P. Luo et al., Hepatology (2018). https://doi.org/10.1002/hep.29561

    Article  PubMed  Google Scholar 

  12. K. Fukuoka et al. (2016). https://doi.org/10.3171/2016.4.PEDS1658

  13. H. Chen et al., Front. Chem. (2022). https://doi.org/10.3389/fchem.2022.1023998

    Article  PubMed  PubMed Central  Google Scholar 

  14. J. Yuan et al., Anal. Chem. (2001). https://doi.org/10.1021/ac0013305

    Article  PubMed  Google Scholar 

  15. Su. Benchao et al., Int. J. Biol. Macromol. (2022). https://doi.org/10.1016/j.ijbiomac.2022.01.056

    Article  Google Scholar 

  16. S. Zhang et al., Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.144026

    Article  PubMed  PubMed Central  Google Scholar 

  17. X.-H. Chang et al., Micromachines. (2019). https://doi.org/10.3390/mi10060422

    Article  PubMed  PubMed Central  Google Scholar 

  18. Q. Zhang et al., Coord. Chem. Rev. (2023). https://doi.org/10.1016/j.ccr.2023.215188

    Article  Google Scholar 

  19. M. Shi et al., J. Chromatogr. B (2011). https://doi.org/10.1016/j.jchromb.2011.08.013

    Article  Google Scholar 

  20. J. Zhang et al., Anal. Chem. (2015). https://doi.org/10.1021/ac504515g

    Article  PubMed  PubMed Central  Google Scholar 

  21. M. Baibakov, J. Wenger, Chem. Phys. Lett. (2018). https://doi.org/10.1016/j.cplett.2018.06.057

    Article  Google Scholar 

  22. L. Huang et al., IEEE Sens. J. (2009). https://doi.org/10.1109/JSEN.2009.2027416

    Article  Google Scholar 

  23. M. Zhao et al., Sens. Act. B Chem. (2017). https://doi.org/10.1016/j.snb.2016.11.004

    Article  Google Scholar 

  24. A.T. Taylor, E.P.C. Lai, Chemosensors. (2021). https://doi.org/10.3390/chemosensors9100275

    Article  Google Scholar 

  25. Y.-M. Peng, Talanta (2021). https://doi.org/10.1016/j.talanta.2021.122329

    Article  PubMed  Google Scholar 

  26. J.-Z. Pan et al., Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-20058-0

    Article  PubMed  PubMed Central  Google Scholar 

  27. X.-X. Fang et al., Talanta (2016). https://doi.org/10.1016/j.talanta.2015.12.018

    Article  PubMed  Google Scholar 

  28. R.A. Yotter, D.M. Wilson, IEEE Sens. J. (2003). https://doi.org/10.1109/JSEN.2003.814651

    Article  Google Scholar 

  29. A. Buchner et al., Sensors. (2021). https://doi.org/10.3390/s21082887

    Article  PubMed  PubMed Central  Google Scholar 

  30. D. Starodubov et al., Adv (Chem. Biol. Sens. Technol, Environ, 2011). https://doi.org/10.1117/12.884338

    Book  Google Scholar 

  31. J. Canals et al., Sensors. (2019). https://doi.org/10.3390/s19030445

    Article  PubMed  PubMed Central  Google Scholar 

  32. M. A. Haidekker, K. Dong, E. Mattos, M. W. van Iersel. Comput. Electron. Agric. (2022). https://doi.org/10.1016/j.compag.2022.107438

  33. N. Gao et al., Anal. Sci. (2021). https://doi.org/10.2116/analsci.21P098

    Article  PubMed  Google Scholar 

  34. N. Gao et al., BioChip J. (2021). https://doi.org/10.1007/s13206-021-00025-0

    Article  Google Scholar 

  35. Z. Xian et al., Microchem. J. (2023). https://doi.org/10.1016/j.microc.2023.109476

    Article  Google Scholar 

  36. M. Zhao, H. Li, W. Liu, Y. Guo, W. Chu, Biosens. Bioelectron. (2016). https://doi.org/10.1016/j.bios.2015.12.099

    Article  PubMed  Google Scholar 

  37. A. X. Zhao, X. J. Tang, Z. H. Zhang, J. H. Liu (2016). http://www.gpxygpfx.com/EN/Y2016/V36/I05/1340

  38. L.H. Ma et al., Sens. Actuators, B Chem. (2019). https://doi.org/10.1016/j.snb.2019.126819

    Article  Google Scholar 

  39. J. Gao. Detection of Weak Signals, 3rd edn. (Tsinghua University Press, 2019), pp. 42–51

  40. Z.D. Yan, L.D. Sun, C.G. Hu, X.T. Hu, Zeppenfeld, P. (2012). https://doi.org/10.3964/j.issn.1000-0593(2012)10-2718-04

    Article  Google Scholar 

  41. J. Kong et al., Lab Chip (2009). https://doi.org/10.1039/b818430e

    Article  PubMed  Google Scholar 

  42. W. Wang et al., Talanta (2021). https://doi.org/10.1016/j.talanta.2020.121660

    Article  PubMed  PubMed Central  Google Scholar 

  43. X.L. Zou et al., Chromatographia (2011). https://doi.org/10.1007/s10337-010-1844-y

    Article  Google Scholar 

  44. B.M. Li et al., RSC Adv. (2014). https://doi.org/10.1039/c4ra08105f

    Article  PubMed  Google Scholar 

  45. X. M. Zhang, et al. (2011) https://doi.org/10.1016/j.bios.2011.02.050

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 62304057), Guangxi Bagui Scholars Project (No.2019A02), Guangxi University Innovation Development Doubling Plan project (No.202201343 and No.202201369),and Science and Technology Major Project of Guangxi (Guike AA22117005 and Guike AA22117007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuimin Sun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 470 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Dai, P., You, H. et al. A compact microfluidic laser-induced fluorescence immunoassay system using avalanche photodiode for rapid detection of alpha-fetoprotein. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00553-3

Keywords

Navigation