Skip to main content
Log in

Absorption-based colorimetric detection of nickel(II) ion by phase separation of thermoresponsive magnetic nanoparticles under microflow

  • Advancements in Instrumentation
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Therma-Max™ LSA Streptavidin is a thermoresponsive magnetic nanoparticle (TMNP). It can be introduced conveniently to molecular recognition groups by avidin–biotin interaction. In this study, we demonstrated the detection of nickel(II) ions by the magnetic separation of TMNP induced by their phase transition under microflow. The NTA-tagged TMNP solution mixed with a Ni2+ sample was introduced into a microchannel with a well structure. Moreover, the sample was heated to induce the thermally induced aggregation of TMNP. The Ni-capturing TMNP were trapped in the well by magnetic fields. The supernatant was removed from the outlet, and a dimethylglyoxime (DMG) solution was introduced into the device for colorimetric detection in the well. Because DMG has a higher stability constant with Ni2+, sensitive colorimetric detection of Ni2+ can be achieved in devices where the sample volume, e.g., optical pathlength, is short. To demonstrate the feasibility of the proposed method, a recovery test was conducted using a commercially available cosmetic sample. Therein, complete collection was achieved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are available on reasonable request.

References

  1. A. Cavani, Toxicology 209, 119 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. G. Genchi, A. Carocci, G. Lauria, M.S. Sinicropi, Int. J. Environ. Res. Public Health 17, 679 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. Inagawa, N. Uehara, T. Okada, Anal. Chim. Acta 1110, 122 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. A. Inagawa, K. Saito, A. Sasaki, N. Uehara, Data Br. 31, 105998 (2020)

    Article  Google Scholar 

  5. M. Jin, H. Yuan, B. Liu, J. Peng, L. Xu, D. Yang, Anal. Methods 12, 5747 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. S.M. Sorouraddin, M.A. Farajzadeh, H. Nasiri, Anal. Methods 11, 1379 (2019)

    Article  CAS  Google Scholar 

  7. C. Capelli, D. Foppiano, G. Venturelli, E. Carlini, E. Magi, C. Ianni, Anal. Lett. 47, 1201 (2014)

    Article  CAS  Google Scholar 

  8. A. Miglione, R. Di Lorenzo, L. Grumetto, M. Spinelli, A. Amoresano, S. Laneri, S. Cinti, Electrochim. Acta 434, 141332 (2022)

    Article  CAS  Google Scholar 

  9. T. Komatsu, M. Maeki, A. Ishida, H. Tani, M. Tokeshi, Anal. Sci. 34, 39 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. P.J. Arujamrus, R.M. Eelapsom, S.P. Encharee, A.O. Bma, M.A. Matatongchai, N.D. Itcharoen, S.C. Hairam, S.T. Amuang, Anal. Sci. 34, 75 (2018)

    Article  Google Scholar 

  11. A. Lace, J. Cleary, Chemosensors 9, 60 (2021)

    Article  CAS  Google Scholar 

  12. U. Förstner, W. Salomons, Environ. Technol. Lett. 1, 494 (1980)

    Article  Google Scholar 

  13. K. Ito, T. Okada, Anal. Methods 5, 5912 (2013)

    Article  CAS  Google Scholar 

  14. A. Yasuda, A. Inagawa, N. Uehara, Langmuir 39, 1730 (2023)

    Article  CAS  PubMed  Google Scholar 

  15. N. Uehara, Y. Masubuchi, A. Inagawa, Colloids Surf A Physicochem Eng Asp 618, 126459 (2021)

    Article  CAS  Google Scholar 

  16. H. Oikawa, T. Shimizu, N. Uehara, Bunseki Kagaku 56, 721 (2007)

    Article  CAS  Google Scholar 

  17. A. Inagawa, N. Masuda, T. Nikata, N. Uehara, Chem. Lett. 49, 974 (2020)

    Article  CAS  Google Scholar 

  18. R. Sasaki, A. Inagawa, N. Uehara, Sens. Actuators B Chem. 393, 134325 (2023)

    Article  CAS  Google Scholar 

  19. C.H. Setchell, J. Chem. Technol. Biotechnol. Biotechnol. 35(3), 175 (1985)

    Article  Google Scholar 

  20. N. Nakamura, K. Hashimoto, T. Matsunaga, Anal. Chem. 63, 268 (1991)

    Article  CAS  PubMed  Google Scholar 

  21. A. Kondo, H. Kamura, K. Higashitani, Appl. Microbiol. Biotechnol. 41, 99 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. H. Furukawa, R. Shimojyo, N. Ohnishi, H. Fukuda, A. Kondo, Appl. Microbiol. Biotechnol. 62, 478 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. N. Ohnishi, H. Furukawa, H. Hideyuki, J.M. Wang, C. Il An, E. Fukusaki, K. Kataoka, K. Ueno, A. Kondo, NanoBiotechnology 2, 43 (2006)

    Article  CAS  Google Scholar 

  24. A. Hoshino, N. Ohnishi, M. Yasuhara, K. Yamamoto, A. Rondo, Biotechnol. Prog. 23, 1513 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. D.B. Gazda, J.S. Fritz, M.D. Porter, Anal. Chim. Acta 508, 53 (2004)

    Article  CAS  Google Scholar 

  26. P. Aryal, E. Brack, T. Alexander, C.S. Henry, Anal. Chem. 95, 5820 (2023)

    Article  CAS  PubMed  Google Scholar 

  27. A. Inagawa, K. Saito, M. Fukuyama, M. Numata, N. Uehara, Anal. Chim. Acta 1182, 338952 (2021)

    Article  CAS  PubMed  Google Scholar 

  28. H.S. Hendrickson, Anal. Chem. 39, 998 (1967)

    Article  CAS  Google Scholar 

  29. D.A. Nedosekin, V.V. Chernysh, M.A. Proskurnin, J. Anal. Chem. 58, 144 (2003)

    Article  CAS  Google Scholar 

  30. H. Li, Z. Cui, C. Han, Sens. Actuators B Chem. 143, 87 (2009)

    Article  Google Scholar 

  31. Y. Shang, F. Wu, L. Qi, J. Nanopart. Res. (2012). https://doi.org/10.1007/s11051-012-1169-x

    Article  Google Scholar 

  32. Ž Krpetić, L. Guerrini, I.A. Larmour, J. Reglinski, K. Faulds, D. Graham, Small 8, 707 (2012)

    Article  PubMed  Google Scholar 

  33. T. Kiatkumjorn, P. Rattanarat, W. Siangproh, O. Chailapakul, N. Praphairaksit, Talanta 128, 215 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Gong, H. Liang, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 211, 342 (2019)

    Article  CAS  Google Scholar 

  35. M. Grasianto, M. Fukuyama, D.M. Kasuya, Y. Mott, H.K. Koseki, A. Hibara, Anal. Chim. Acta 1273, 341451 (2023)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid for Early-Career Scientists (JP19K15599) and Grant-in-Aid for Scientific Research in Innovative Areas (JP20H05203) from the Japan Society for the Promotion of Science. AI thanks Utsunomiya University for the Research Grant funded by Utsunomiya University President Strategy expenses and a grant for medical and biomedical engineering funded by the School of Engineering. The authors thank the Advanced Instrumental Analysis Department of Utsunomiya University for dynamic light scattering measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arinori Inagawa or Nobuo Uehara.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2453 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, R., Inagawa, A., Xie, X. et al. Absorption-based colorimetric detection of nickel(II) ion by phase separation of thermoresponsive magnetic nanoparticles under microflow. ANAL. SCI. 40, 791–798 (2024). https://doi.org/10.1007/s44211-024-00521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-024-00521-x

Keywords

Navigation