Skip to main content
Log in

Synthesis of low-temperature irreversible thermochromic indicator based on functional polydiacetylene for food storage applications

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermochromic materials are of great interest because of their color transition characteristic as a function of temperature, and this property may find potential applications as a temperature indicator. Irreversible thermochromic materials that display color change at low temperatures can be utilized as a temperature indicator to ensure the safety and quality of deep-frozen products during storage and transportation. In this work, we have successfully prepared a novel colorimetric sensor based on a functionalized polydiacetylene dye. In order to achieve thermochromic transition in different temperature ranges, pentacosadiynoic acid (PC) was functionalized with ethylene glycol monomethylether (EGME), diethylene glycol monomethyl ether (DGME) and triethylene glycol monomethyl ether (TGME), resulting the formation of ester head groups. Photopolymerization of the synthesized diacetylene dyes was carried out to convert the monomers of the dyes into polymers. The Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), and Raman spectroscopy were used to characterize the synthesized product. The absorption spectroscopy and optical images study revealed that the functionalized dyes underwent irreversible thermochromic transition when exposed to freezing temperatures. This property of irreversible color transition can make them a reliable indicator of temperature change. The functional dye was incorporated into a polymer film to apply directly on deep freeze products as a polymer strip and when the temperature increases upon freezing level, the color of the thermochromic strip changes which can provide a visual warning to the consumers and manufacturers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data and code availability

Data will be made available on request.

Abbreviations

PC:

10,12-Pentacosadiynoic acid

PCE:

10,12-Pentacosadiynoate-ethylene glycol monomethyl ether

PCD:

10,12-Pentacosadiynoate-diethylene glycol monomethyl ether

PCT:

10,12-Pentacosadiynoate-triethylene glycol monomethyl ether

PPCE:

Poly(10,12-Pentacosadiynoate-ethylene glycol monomethyl ether) (before thermal treatment)

PPCD:

Poly(10,12-Pentacosadiynoate-diethylene glycol monomethyl ether) (before thermal treatment)

PPCT:

Poly(10,12-Pentacosadiynoate-triethylene glycol monomethyl ether) (before thermal treatment)

TPPCE:

Poly(10,12-Pentacosadiynoate-ethylene glycol monomethyl ether) (after thermal treatment)

TPPCD:

Poly(10,12-Pentacosadiynoate-diethylene glycol monomethyl ether) (after thermal treatment)

TPPCT:

Poly(10,12-Pentacosadiynoate-triethylene glycol monomethyl ether) (after thermal treatment)

References

  1. Shin S-H, Park DH, Jung J-Y, Lee MH, Nah J (2017) Ferroelectric zinc oxide nanowire embedded flexible sensor for motion and temperature sensing. ACS Appl Mater Interfaces 9:9233

    Article  CAS  PubMed  Google Scholar 

  2. Arman Kuzubasoglu B, Kursun Bahadir S (2020) Flexible temperature sensors: a review. Sens Actuators A Phys 315:112282. https://doi.org/10.1016/j.sna.2020.112282

    Article  CAS  Google Scholar 

  3. Trung TQ, Ramasundaram S, Hwang B-U, Lee N-E (2016) An all‐elastomeric transparent and stretchable temperature sensor for body‐attachable wearable electronics. Adv Mater 28:502. https://doi.org/10.1002/adma.201504441

    Article  CAS  PubMed  Google Scholar 

  4. Yousefi H, Su H-M, Imani SM, Alkhaldi K, Filipe CDM, Didar TF (2019) Intelligent food packaging: a review of smart sensing technologies for monitoring food quality. ACS Sens 4:808. https://doi.org/10.1021/acssensors.9b00440

    Article  CAS  PubMed  Google Scholar 

  5. Mohammadian E, Alizadeh-Sani M, Jafari SM (2020) Smart monitoring of gas/temperature changes within food packaging based on natural colorants. Compr Rev Food Sci Food Saf 19:2885

    Article  PubMed  Google Scholar 

  6. Wang S, Liu X, Yang M, Zhang Y, Xiang K, Tang R (2015) Review of time temperature indicators as quality monitors in food packaging: review of time temperature indicators. Packag Technol Sci 28:839

    Article  CAS  Google Scholar 

  7. Mustafa F, Andreescu S (2018) Chemical and biological sensors for food-quality monitoring and smart packaging. Foods 7:168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferrara M, Bengisu M (2014) Materials that change color. In: Ferrara M, Bengisu M (eds) Materials that change color: smart materials, intelligent design. Springer, Cham

    Chapter  Google Scholar 

  9. Ardila-Diaz LD, Oliveira TV, Soares NFF (2020) Development and evaluation of the chromatic behavior of an intelligent packaging material based on cellulose acetate incorporated with polydiacetylene for an efficient packaging. Biosensors 10:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen X, Yoon JJD (2011) A thermally reversible temperature sensor based on polydiacetylene: synthesis and thermochromic properties. Dyes Pigments 89:194

    Article  CAS  Google Scholar 

  11. Wacharasindhu S, Montha S, Boonyiseng J et al (2010) Tuning of thermochromic properties of polydiacetylene toward universal temperature sensing materials through Amido hydrogen bonding. Macromolecules 43:716

    Article  CAS  Google Scholar 

  12. Elsawy H, Sedky A, Abou Taleb MF, El-Newehy MH (2022) Preparation of novel reversible thermochromic polyethylenimine dendrimer and tricyanofuran hydrazone chromophore. Eur Polym J 174:111344. https://doi.org/10.1016/j.eurpolymj.2022.111344

    Article  CAS  Google Scholar 

  13. Chowdhury M, Joshi M, Butola BS (2014) Photochromic and thermochromic colorants in textile applications. J Eng Fibers Fabrics 9:155892501400900130

    Google Scholar 

  14. Galliani D, Mascheroni L, Sassi M et al (2015) Thermochromic latent-pigment-based time-temperature indicators for perishable goods. Adv Opt Mater 3:1164

    Article  CAS  Google Scholar 

  15. Sadoh A, Hossain S, Ravindra NM (2021) Thermochromic polymeric films for applications in active intelligent packaging—an overview. Micromachines 12:1193

    Article  PubMed  PubMed Central  Google Scholar 

  16. Enkelmann V (1984) Structural aspects of the topochemical polymerization of diacetylenes. Polydiacetylenes. Springer, Cham

    Google Scholar 

  17. Wegner G (1972) Topochemical polymerization of monomers with conjugated triple bonds. Die Markromal Chem Phys 154:35

    Article  CAS  Google Scholar 

  18. Mergu N, Kim H, Ryu J, Son Y-A (2020) Simple and fast responsive colorimetric moisture sensor based on symmetrical conjugated polyme. Sens Actuators B Chem 311:127906. https://doi.org/10.1016/j.snb.2020.127906

    Article  CAS  Google Scholar 

  19. Chae S, Lee JP, Kim J-M (2016) Mechanically drawable thermochromic and mechanothermochromic polydiacetylene sensors. Adv Func Mater 26:1769. https://doi.org/10.1002/adfm.201504845

    Article  CAS  Google Scholar 

  20. Kim MJ, Angupillai S, Min K, Ramalingam M, Son Y-A (2018) Tuning of the topochemical polymerization of diacetylenes based on an odd/even effect of the peripheral alkyl chain: thermochromic reversibility in a thin film and a single-component ink for a fountain pen. ACS Appl Mater Interfaces 10:24767. https://doi.org/10.1021/acsami.8b05896

    Article  CAS  PubMed  Google Scholar 

  21. Khanantong C, Charoenthai N, Wacharasindhu S, Sukwattanasinitt M, Traiphol N, Traiphol R (2018) Influences of solvent media on chain organization and thermochromic behaviors of polydiacetylene assemblies prepared from monomer with symmetric alkyl tails. J Ind Eng Chem 58:258. https://doi.org/10.1016/j.jiec.2017.09.035

    Article  CAS  Google Scholar 

  22. Hall AV, Musa OM, Steed JW (2021) Properties and applications of stimuli-responsive diacetylenes. Cryst Growth Des 21:3614. https://doi.org/10.1021/acs.cgd.1c00300

    Article  CAS  Google Scholar 

  23. Huo J, Deng Q, Fan T et al (2017) Advances in polydiacetylene development for the design of side chain groups in smart material applications–a mini review. Polym Chem 8:7438. https://doi.org/10.1039/C7PY01396E

    Article  CAS  Google Scholar 

  24. Sun X, Chen T, Huang S, Li L, Peng H (2010) Chromatic polydiacetylene with novel sensitivity. Chem Soc Rev 39:4244. https://doi.org/10.1039/C001151G

    Article  CAS  PubMed  Google Scholar 

  25. Yu X, Luo Y, Wu W, Yan Q, Zou G, Zhang Q (2008) Synthesis and reversible thermochromism of azobenzene-containing polydiacetylenes. Eur Polymer J 44:3015. https://doi.org/10.1016/j.eurpolymj.2008.05.035

    Article  CAS  Google Scholar 

  26. Jelinek R, Ritenberg M (2013) Polydiacetylenes–recent molecular advances and applications. RSC Adv 3:21192. https://doi.org/10.1039/C3RA42639D

    Article  CAS  Google Scholar 

  27. Khanantong C, Charoenthai N, Kielar F, Traiphol N, Traiphol R (2019) Influences of bulky aromatic head group on morphology, structure and color-transition behaviors of polydiacetylene assemblies upon exposure to thermal and chemical stimuli. Colloids Surf A 561:226. https://doi.org/10.1016/j.colsurfa.2018.10.076

    Article  CAS  Google Scholar 

  28. Mino N, Tamura H, Ogawa K (1991) Analysis of color transitions and changes on Langmuir-Blodgett films of a polydiacetylene derivative. Langmuir 7:2336. https://doi.org/10.1021/la00058a060

    Article  CAS  Google Scholar 

  29. Wrackmeyer M, O’Rourke AP, Pugh T, Turner ML, Webb SJ (2021) Effect of varying substituent on the colour change transitions of diacetylene pigments. Dyes Pigm 192:109397. https://doi.org/10.1016/j.dyepig.2021.109397

    Article  CAS  Google Scholar 

  30. Mapazi O, Matabola KP, Moutloali RM, Ngila CJ (2018) High temperature thermochromic polydiacetylene supported on polyacrylonitrile nanofibers. Polymer 149:106. https://doi.org/10.1016/j.polymer.2018.06.028

    Article  CAS  Google Scholar 

  31. Kim J-M, Lee J-S, Choi H, Sohn D, Ahn DJ (2005) Rational design and in-situ FTIR analyses of colorimetrically reversibe polydiacetylene supramolecules. Macromolecules 38:9366. https://doi.org/10.1021/ma051551i

    Article  CAS  Google Scholar 

  32. Mapazi O, Matabola PK, Moutloali RM, Ngila CJ (2017) A urea-modified polydiacetylene-based high temperature reversible thermochromic sensor: Characterisation and evaluation of properties as a function of temperature. Sens Actuators B Chem 252:671. https://doi.org/10.1016/j.snb.2017.05.095

    Article  CAS  Google Scholar 

  33. Chen X, Yoon J (2011) A thermally reversible temperature sensor based on polydiacetylene: synthesis and thermochromic properties. Dyes Pigm 89:194. https://doi.org/10.1016/j.dyepig.2009.12.015

    Article  CAS  Google Scholar 

  34. Kamphan A, Traiphol N, Traiphol R (2016) Versatile route to prepare reversible thermochromic polydiacetylene nanocomposite using low molecular weight poly(vinylpyrrolidone). Colloids Surf A 497:370. https://doi.org/10.1016/j.colsurfa.2016.03.041

    Article  CAS  Google Scholar 

  35. Xu Y, Ding Z, Zhu H, Zhao X, Gao J (2022) Fabrication of a novel polydiacetylene-based gel system through self-assembly and the stimuli-induced colorimetric responsiveness. Eur Polym J 171:111202. https://doi.org/10.1016/j.eurpolymj.2022.111202

    Article  CAS  Google Scholar 

  36. Joung JF, Baek J, Kim Y et al (2016) Electronic relaxation dynamics of PCDA-PDA studied by transient absorption spectroscopy. Phys Chem Chem Phys 18:23096. https://doi.org/10.1039/C6CP03858A

    Article  CAS  PubMed  Google Scholar 

  37. Mergu N, Son Y-A (2021) Design and synthesis of polydiacetylenes, and their low temperature irreversible thermochromic properties. Dyes Pigm 184:108839. https://doi.org/10.1016/j.dyepig.2020.108839

    Article  CAS  Google Scholar 

  38. Mapazi O, Matabola PK, Moutloali RM, Ngila CJJS (2017) A urea-modified polydiacetylene-based high temperature reversible thermochromic sensor: characterisation and evaluation of properties as a function of temperature. AB Chem 252:671

    CAS  Google Scholar 

  39. Alam AK, Jenks D, Kraus GA, Xiang C (2021) Synthesis fabrication, and characterization of functionalized polydiacetylene containing cellulose nanofibrous composites for colorimetric sensing of organophosphate compounds. Nanomaterials 11:1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kamphan A, Charoenthai N, Traiphol R (2016) Fine tuning the colorimetric response to thermal and chemical stimuli of polydiacetylene vesicles by using various alcohols as additives. Colloids Surf A 489:103. https://doi.org/10.1016/j.colsurfa.2015.10.035

    Article  CAS  Google Scholar 

  41. Balakrishnan S, Lee S, Kim J-M (2010) Thermochromic reversibility of conjugated polymers derived from a diacetylenic lipid containing lithium salt. J Mater Chem 20:2302. https://doi.org/10.1039/B923323G

    Article  CAS  Google Scholar 

  42. Yoon B, Shin H, Kang E-M et al (2013) Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors. ACS Appl Mater Interfaces 5:4527. https://doi.org/10.1021/am303300g

    Article  CAS  PubMed  Google Scholar 

  43. Lee J, Balakrishnan S, Cho J, Jeon S-H, Kim J-M (2011) Detection of adulterated gasoline using colorimetric organic microfibers. J Mater Chem 21:2648. https://doi.org/10.1039/C0JM02287J

    Article  CAS  Google Scholar 

  44. Lim S, Cordova DLM, Robang AS et al (2023) Thermochromic behavior of polydiacetylene nanomaterials driven by charged peptide amphiphiles. Biomacromolecules. https://doi.org/10.1021/acs.biomac.3c00422

    Article  PubMed  PubMed Central  Google Scholar 

  45. Foley JL, Li L, Sandman DJ (1998) Polydiacetylenes with long wavelength absorption. Chem Mater 10:3984. https://doi.org/10.1021/cm9804259

    Article  CAS  Google Scholar 

  46. Ahn DJ, Lee S, Kim J-M (2009) Rational design of conjugated polymer supramolecules with tunable colorimetric responses. Adv Func Mater 19:1483. https://doi.org/10.1002/adfm.200801074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the CSIR-CSIO (OLP-247) for financial assistance. Sachin [25/CSIR-UGC NET JUNE 2019] and Deepika [201610203672] are also thankful to CSIR-UGC for JRF fellowship support. Authors are also grateful to the Director, CSIR-CSIO, for providing his support during this work.

Funding

CSIR-CSIO (OPL247).

Author information

Authors and Affiliations

Authors

Contributions

SG visualization, experimental work, writing original draft, data interpretation, formal analysis, validation, conceptualization. DS data curation, software, formal analysis, and validation. KK review, editing, supervision, conceptualization, resources, funding, and acquisition.

Corresponding author

Correspondence to Kamlesh Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Supplementary information

Experimental setup, 1H and 13C NMR spectra.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1120 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, S., Sharma, D. & Kumar, K. Synthesis of low-temperature irreversible thermochromic indicator based on functional polydiacetylene for food storage applications. J Mater Sci 59, 7561–7573 (2024). https://doi.org/10.1007/s10853-024-09637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09637-x

Navigation