Skip to main content
Log in

High-efficiency bioaffinity separation of cells and proteins using novel thermoresponsive biotinylated magnetic nanoparticles

  • Original Article
  • Published:
NanoBiotechnology

Abstract

Thermoresponsive magnetic nanoparticles with an upper critical solution temperature (UCST) in aqueous solution were synthesized for the first time. Named Therma-Max, the material was synthesized by redox copolymerization of N-acryloyl glycinamide with a monomer form of biotin using methacrylated dextran-magnetite. While the resulting Therma-Max was completely dispersed at temperatures above the UCST (18°C) and could not be separated by a permanent magnet, it was rapidly flocculated when the temperature fell below the UCST and was easily separated by a permanent magnet. The flocculated particles dispersed completely when the temperature was raised to above the UCST. Because biotin was immobilized on the Therma-Max, avidin and antibodies were subsequently immobilized with good efficiency. Furthermore, transiently transfected Arabidopsis protoplasts, which have surface display of CD4 antigen, were efficiently captured and enriched by using a biotinylated anti-CD4 antibody in combination with avidin-conjugated Therma-Max. Also, the silkworm storage protein (SP2) was efficiently separated from the silkworm hemolymph by using biotinylated anti-IgG antibody and anti-SP2 antibody in combination with avidin-conjugated Therma-Max. In both cases, it was confirmed that specificity and adsorption capacity were markedly improved by converting the conventional micro-size fine magnetic particles to nano-size particles. These results show the potential of Therma-Max with a UCST in bioaffinity separation of cells and biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunnill, P. and Lilly, M. D. (1974), Biotechnol. 16, 987–990.

    CAS  Google Scholar 

  2. Sada, E., Katoh, S., and Terashima, M. (1981), Biotechnol. Bioeng. 23, 1037–1044.

    Article  CAS  Google Scholar 

  3. Setchell, C. H. (1985), J. Chem. Technol. Biotechnol. 35B, 175–182.

    Article  CAS  Google Scholar 

  4. Uhlen, M. (1989), Nature 340, 733, 734.

    Article  Google Scholar 

  5. Nakamura, N., Hashimoto, K., and Matsunaga, T. (1991), Anal. Chem. 63, 268–272.

    Article  CAS  Google Scholar 

  6. Shinkai, M., Honda, H., and Kobayashi, T. (1991), Biocatalysis 5, 61–69.

    CAS  Google Scholar 

  7. Khng, H. P. et al. (1998), Biotechnol. Bioeng. 60, 419–424.

    Article  CAS  Google Scholar 

  8. Seta, K. et al. (1998), Chromatography 19, 112, 113.

    Google Scholar 

  9. Welter, B. H. and Price, T. M. (1999), Biotechniques 27, 282–286.

    CAS  Google Scholar 

  10. Honda, H., Kawabe, A., Shinkai, M., and Kobayashi, T. (1999), Biochem. Eng. J. 3, 157–160.

    Article  CAS  Google Scholar 

  11. Kondo, A., Kamura, H., and Higashitani, K. (1994), Appl. Microbiol. Biotechnol. 41, 99–105.

    CAS  Google Scholar 

  12. Kondo, A. and Fukuda, H. (1997), J. Ferment. Bioeng. 84, 337–341.

    Article  CAS  Google Scholar 

  13. Heskins, M. and Guillet, J. E. (1968), J. Macromol. Sci. Chem. A2, 1441–1455.

    Google Scholar 

  14. Hoshino, F., Fujimoto, T., Kawaguchi, H., and Ohtsuka, Y. (1987), Polym. J. 19, 241–247.

    Article  CAS  Google Scholar 

  15. Katono, H. et al. (1991), J.Controlled Release 16, 215–228.

    Article  CAS  Google Scholar 

  16. Miltenyi, S., Muller, W., Weichel, W., & Radbruch, A. (1990), Cytometry 11, 231–238.

    Article  CAS  Google Scholar 

  17. Dorr, I., Miltenyi, S., Salamini, F., and Uhrig, H. (1994), Biotechnology 12, 511–515.

    Article  Google Scholar 

  18. Barth, S., Goerlich, R., and Schnabl, H. (1994), J. Biochem. Biophys. Methods 29, 83–86.

    Article  CAS  Google Scholar 

  19. Kausch, A. P., Owen, Jr., T. P., Narayanswami, S., and Bruce, B. D. (1999), Biotechniques 26, 336–343.

    CAS  Google Scholar 

  20. Telfer, W., Keim, P., and Law, J. (1983), Insect Biochem. 13, 601–613.

    Article  CAS  Google Scholar 

  21. Tojo, S., Nagata, M., and Kobayashi, M. (1980), Insect Biochem. 10, 289–303.

    Article  CAS  Google Scholar 

  22. Haas, H. C. and Schuler, N. W. (1964), Polymer Letters 2, 1095–1096.

    Article  Google Scholar 

  23. Axelos, M., Curie, C., Mazzolini, L., Bardet, C., and Lescure, B. (1992), Biochemistry 30, 123–128.

    CAS  Google Scholar 

  24. An, C. I., Sawada, A., Fukusaki, E., and Kobayashi, A. (2003), Biosci. Biotechnol. Biochem. 67, 2674–2677.

    Article  CAS  Google Scholar 

  25. Kang, B. H., Busse, J. S., Dickey, C., Rancour, D. M., and Bednarek, S. Y. (2001), Plant Physiol. 126, 47–68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eiichiro Fukusaki or Akihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohnishi, N., Furukawa, H., Hideyuki, H. et al. High-efficiency bioaffinity separation of cells and proteins using novel thermoresponsive biotinylated magnetic nanoparticles. Nanobiotechnol 2, 43–49 (2006). https://doi.org/10.1007/s12030-006-0006-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-006-0006-7

Key Words

Navigation