Skip to main content
Log in

Mixed-mode chromatographic performance using nicotinic acid-functionalized chito-oligosaccharide-bonded Ti/Si hybrid monolithic capillary columns

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This article describes the fabrication of porous nicotinic acid-functionalized chito-oligosaccharide-bonded titania/silica hybrid monoliths (TiO2/SiO2@ChO-N) through a co-gelation sol–gel process. A capillary monolith with a well-defined and homogeneous structure was obtained by controlling the hydrolysis speed of titanium alkoxides in a sol mixture by using glycerol and acetylacetone. As a result of the functionalization with chito-oligosaccharides (ChO)-modified nicotinic acid, the obtained stationary phase provides superior physiochemical properties, such as a cationic hydrophilic surface, porosity, and mechanical strength. Scanning electron microscope and attenuated total reflectance-infrared spectroscopy were used to characterize the functionalized monolithic columns. The produced capillary columns showed high chromatographic performance with acceptable selectivity for charged analytes as well as organic polar compounds such as nucleic bases, nucleosides, carbamate pesticides, and strobilurin fungicides. The obtained results also indicated that the functionalized ChO’s amino, amide, hydroxyl, and pyridinium ring moieties served as hydrophilic electrostatic traps for charged substances, in addition to stroing π–π interaction with the carbamate pesticides and strobilurin fungicides analytes via hydrogen bonding.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are available.

References

  1. T. Tennikova, F. Svec, B. Belenkii, J. Liq. Chromatogr. (1990). https://doi.org/10.1080/01483919008051787

    Article  Google Scholar 

  2. H. Zou, X. Huang, M. Ye, Q. Luo, J. Chromatogr. A (2002). https://doi.org/10.1016/S0021-9673(02)00072-9

    Article  PubMed  Google Scholar 

  3. R.A. Wu, L. Hu, F. Wang, M. Ye, H. Zou, J. Chromatogr. A (2008). https://doi.org/10.1016/j.chroma.2007.09.022

    Article  PubMed  PubMed Central  Google Scholar 

  4. H. Kobayashi, T. Ikegami, H. Kimura, T. Hara, D. Tokuda, N. Tanaka, Anal. Sci. (2006). https://doi.org/10.2116/analsci.22.491

    Article  PubMed  Google Scholar 

  5. I. de Paula Lima, S.P. Valle, M.A.L. de Oliveira, F.F. de Carvalho Marques, F.A.S. Vaz, Microchem. J. (2023). https://doi.org/10.1016/j.microc.2023.108598

    Article  Google Scholar 

  6. K. Tsuge, L.W. Lim, T. Takeuchi, Anal. Sci. (2021). https://doi.org/10.2116/analsci.20P279

    Article  PubMed  Google Scholar 

  7. L.W. Lim, L. Rong, T. Takeuchi, Anal. Sci. (2012). https://doi.org/10.2116/analsci.28.205

    Article  PubMed  Google Scholar 

  8. M. Hefnawy, J. Chromatogr. A (2023). https://doi.org/10.1016/j.chroma.2023.463819

    Article  PubMed  Google Scholar 

  9. F. Svec, J.M. Frechet, Sci. (1996). https://doi.org/10.1126/science.273.5272.205

    Article  Google Scholar 

  10. F. Furqani, L.W. Lim, T. Takeuchi, J. Indones. Chem. Soc. (2019). https://doi.org/10.34311/jics.2019.02.2.81

    Article  Google Scholar 

  11. Z. Jiang, N.W. Smith, Z. Liu, J. Chromatogr. A (2011). https://doi.org/10.1016/j.chroma.2011.02.024

    Article  PubMed  PubMed Central  Google Scholar 

  12. A. Khodabandeh, R.D. Arrua, S.C. Thickett, E.F. Hilder, A.C.S. Appl, Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c03542

    Article  Google Scholar 

  13. L. Han, H. Liu, J. Zhang, J. Zhou, T. Jiang, Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.154456

    Article  Google Scholar 

  14. S.T. Wang, M.Y. Wang, X. Su, B.F. Yuan, Y.Q. Feng, Anal. Chem. (2012). https://doi.org/10.1021/ac301258q

    Article  PubMed  PubMed Central  Google Scholar 

  15. L. Zhang, Y. Wang, W. Zhang, Y.I. Hsu, T.A. Asoh, B. Qi, H. Uyama, A.C.S. Biomater, Sci. Eng. (2022). https://doi.org/10.1021/acsbiomaterials.2c00385

    Article  Google Scholar 

  16. M. Abi Jaoudé, J. Randon, Anal. Bioanal. Chem. (2011). https://doi.org/10.1007/s00216-011-4681

    Article  PubMed  Google Scholar 

  17. Y. Chen, Y. Yi, J.D. Brennan, M.A. Brook, Chem. Mater. (2006). https://doi.org/10.1021/cm060948d

    Article  Google Scholar 

  18. G. Hasegawa, A. Kitada, S. Kawasaki, K. Kanamori, K. Nakanishi, Y. Kobayashi, H. Kageyama, T. Abe, J. Electrochem. Soc. (2014). https://doi.org/10.1149/2.0491501jes

    Article  Google Scholar 

  19. S.-T. Wang, W. Huang, W. Lu, B.-F. Yuan, Y.-Q. Feng, Anal. Chem. (2013). https://doi.org/10.1021/ac4025297

    Article  PubMed  PubMed Central  Google Scholar 

  20. S. Ma, Y. Li, C. Ma, Y. Wang, J. Ou, M. Ye, Adv. Mater. (2019). https://doi.org/10.1002/adma.201902023

    Article  PubMed  PubMed Central  Google Scholar 

  21. X. Lv, ChemNanoMat (2022). https://doi.org/10.1002/cnma.202100460

    Article  Google Scholar 

  22. B.H. Fumes, M.R. Silva, F.N. Andrade, C.E.D. Nazario, F.M. Lanças, TrAC Trends Anal. Chem. (2015). https://doi.org/10.1016/j.trac.2015.04.011

    Article  Google Scholar 

  23. M. Sato, H. Hara, T. Nishida, Y. Sawada, J. Mater. Chem. (1996). https://doi.org/10.1039/JM9960601767

    Article  Google Scholar 

  24. M.E.I. Badawy, M.A.M. El-Nouby, A.E.M. Marei, Int. J. Anal. Chem. (2018). https://doi.org/10.1155/2018/3640691

    Article  PubMed  PubMed Central  Google Scholar 

  25. M.E.I. Badawy, A.E.-S.M. Marei, M.A.M. El-Nouby, Sep. Sci. Plus (2018). https://doi.org/10.1002/sscp.201800084

    Article  Google Scholar 

  26. M.A.M. El-Nouby, M.E.I. Badawy, A.E.-S.M. Marei, Nanotechnol. Environ. Eng. (2021). https://doi.org/10.1007/s41204-021-00139-8

    Article  Google Scholar 

  27. X. Huang, F.W. Foss Jr., P.K. Dasgupta, Anal. Chim. Acta (2011). https://doi.org/10.1016/j.aca.2011.09.028

    Article  PubMed  Google Scholar 

  28. W. Bragg, S.A. Shamsi, J. Chromatogr. A (2012). https://doi.org/10.1016/j.chroma.2012.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  29. Y. Jiang, B. Zhang, J. Li, Y. Sun, X. Wang, P. Ma, D. Song, Talanta (2021). https://doi.org/10.1016/j.talanta.2020.121799

    Article  PubMed  PubMed Central  Google Scholar 

  30. Z. Lü, P. Zhang, L. Jia, J. Chromatogr. A (2010). https://doi.org/10.1016/j.chroma.2010.05.051

    Article  PubMed  Google Scholar 

  31. M.M. Jaworska, D. Antos, A. Górak, React. Funct. Polym. (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104606

    Article  Google Scholar 

  32. C. Qiao, X. Ma, X. Wang, L. Liu, Lwt (2021). https://doi.org/10.1016/j.lwt.2020.109984

    Article  Google Scholar 

  33. O. Ruzimuradov, S. Nurmanov, Y. Kodani, R. Takahashi, I. Yamada, J. Sol Gel Sci. Technol. (2012). https://doi.org/10.1007/s10971-012-2903-7

    Article  Google Scholar 

  34. Y.A. Chesalov, G.B. Chernobay, T.V. Andrushkevich, J. Mol. Catal. A Chem. (2013). https://doi.org/10.1016/j.molcata.2013.03.007

    Article  Google Scholar 

  35. J. Randon, J.-F. Guerrin, J.-L. Rocca, J. Chromatogr. A (2008). https://doi.org/10.1016/j.chroma.2008.10.108

    Article  PubMed  Google Scholar 

  36. F. Schindler, H. Schmidbaur, Angew. Chem. Int. Ed. (1967). https://doi.org/10.1002/anie.196706831

    Article  Google Scholar 

  37. A.B. Zimmerman, A.M. Nelson, E.G. Gillan, Chem. Mater. (2012). https://doi.org/10.1021/cm3016534

    Article  Google Scholar 

  38. G.K. Tat’yana, A.P. Safronov, E.V. Shadrina, M.V. Ivanenko, A.I. Suvorova, O.N. Chupakhin, J. Colloid Interface Sci (2012). https://doi.org/10.1016/j.jcis.2011.09.018

    Article  Google Scholar 

  39. J. Ou, Z. Liu, H. Wang, H. Lin, J. Dong, H. Zou, Electrophoresis (2015). https://doi.org/10.1002/elps.201400316

    Article  PubMed  Google Scholar 

  40. W. Rupp, N. Hüsing, U. Schubert, J. Mater. Chem. (2002). https://doi.org/10.1039/B204956B

    Article  Google Scholar 

  41. H.-J. Chen, L. Wang, W.-Y. Chiu, Mater. Chem. Phys. (2007). https://doi.org/10.1016/j.matchemphys.2006.02.007

    Article  Google Scholar 

  42. C. Aydoğan, B. Beltekin, N. Demir, B. Yurt, Z. El Rassi, Molecules (2023). https://doi.org/10.3390/molecules28031423

    Article  PubMed  PubMed Central  Google Scholar 

  43. Y. Chen, Q. Chen, L. Song, H.-P. Li, F.-Z. Hou, Microporous Mesoporous Mater. (2009). https://doi.org/10.1016/j.micromeso.2008.12.021

    Article  Google Scholar 

  44. T. Hara, G. Desmet, G.V. Baron, H. Minakuchi, S. Eeltink, J. Chromatogr. A (2016). https://doi.org/10.1016/j.chroma.2016.03.009

    Article  PubMed  Google Scholar 

  45. S.-H. Jun, E.-J. Lee, S.-W. Yook, H.-E. Kim, H.-W. Kim, Y.-H. Koh, Acta Biomater. (2010). https://doi.org/10.1016/j.actbio.2009.06.024

    Article  PubMed  PubMed Central  Google Scholar 

  46. P. Renoud, B. Toury, S. Benayoun, G. Attik, B. Grosgogeat, PLoS One (2012). https://doi.org/10.1371/journal.pone.0039367

    Article  PubMed  PubMed Central  Google Scholar 

  47. A.J. Alpert, J. Chromatogr. A (1990). https://doi.org/10.1016/s0021-9673(00)96972-3

    Article  Google Scholar 

  48. Z. Li, S. Li, F. Zhang, H. Geng, B. Yang, Talanta (2021). https://doi.org/10.1016/j.talanta.2021.122340

    Article  PubMed  PubMed Central  Google Scholar 

  49. T. Takeuchi, T. Kawasaki, L.W. Lim, Anal. Sci. (2010). https://doi.org/10.2116/analsci.26.511

    Article  PubMed  Google Scholar 

  50. S. Jena, J. Dutta, K.D. Tulsiyan, A.K. Sahu, S.S. Choudhury, H.S. Biswal, Chem. Soc. Rev. (2022). https://doi.org/10.1039/D2CS00133K

    Article  PubMed  Google Scholar 

  51. M. Shahid, S. Manoharadas, H. Chakdar, A.F. Alrefaei, M.F. Albeshr, M.H. Almutairi, Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2021.130372

    Article  PubMed  Google Scholar 

  52. T. Inoue, Y. Nagatomi, K. Suga, A. Uyama, N. Mochizuki, J. Agric. Food. Chem. (2011). https://doi.org/10.1021/jf104421q

    Article  PubMed  Google Scholar 

  53. A.H. Hara, H.K. Kaya, Environ. Entomol. (1983). https://doi.org/10.1093/ee/12.2.496

    Article  Google Scholar 

  54. M. Yaşar Mumin, H. Aral, M. Sunkur, T. Aral, Chem. Sel. (2022). https://doi.org/10.1002/slct.202204069

    Article  Google Scholar 

  55. S. Noga, A. Felinger, B. Buszewski, J. AOAC Int. (2012). https://doi.org/10.5740/jaoacint.SGE_Noga

    Article  PubMed  Google Scholar 

  56. D.W. Bartlett, J.M. Clough, J.R. Godwin, A.A. Hall, M. Hamer, B. Parr-Dobrzanski, Pest Manag. Sci. (2002). https://doi.org/10.1002/ps.520

    Article  PubMed  Google Scholar 

  57. X. Wang, X. Li, Y. Wang, Y. Qin, B. Yan, C.J. Martyniuk, Environ. Pollut. (2021). https://doi.org/10.1016/j.envpol.2021.116671

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partly supported by JSPS Grants-in-Aid for Scientific Research (KAKENHI, Grant number: 18K05168), Japan. The authors acknowledge the MEXT scholarship from the Japanese government and instrumentation assistance from Prof. Fusheng Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Wah Lim.

Ethics declarations

Conflict of interest

On behalf of the author, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nouby, M.A.M., Lim, L.W. Mixed-mode chromatographic performance using nicotinic acid-functionalized chito-oligosaccharide-bonded Ti/Si hybrid monolithic capillary columns. ANAL. SCI. 39, 2019–2029 (2023). https://doi.org/10.1007/s44211-023-00416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00416-3

Keywords

Navigation