Skip to main content
Log in

Morphology and dispersion control of titania–silica monolith with macro–meso pore system

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Macroporous gels with bicontinuous morphology in micrometer range were prepared in a titania–silica system containing 5 and 7.6 mass % titania using tetraethoxysilane and four kinds of Ti precursors, two titanium alkoxides, titanium chloride and titanium sulfate, under coexistence of poly(ethylene glycol) (PEG) with an average molecular weight of 20,000. In all the systems with different Ti precursors, the addition of PEG induced phase separation, and the macroporous morphology was formed when the transitional structure of phase separation was frozen-in by sol–gel transition of inorganic components. However, we can see large differences in phase separation tendency and Ti dispersion in silica network depending on the Ti precursors used. When titanium alkoxides were added into pure silica sol–gel system, phase separation tendency largely decreased, so that low temperature reaction was necessary for macropore formation. When we used titanium salts, on the other hand, phase separation tendency does not change much from pure silica system. The difference has been tentatively attributed to the difference in the mixing level of Ti in silica network. Although titania tended to aggregate when titanium alkoxides were used as precursors, Ti could be well dispersed in silica gel matrix when acetylacetone was added in the alkoxide system or when titanium salts were used as Ti precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Takahashi R, Nakanishi K, Soga N (1998) J Ceram Soc Jpn 106:772–777

    Article  CAS  Google Scholar 

  2. Takahashi R, Sato S, Sodesawa T, Suzuki K, Tafu M, Nakanishi K, Soga N (2001) J Am Ceram Soc 84(9):1968–1976

    Article  CAS  Google Scholar 

  3. Nishihara H, Mukai SR, Fujii Y, Tago T, Masuda T, Tamon H (2006) J Mater Chem 16(31):3231–3236

    Article  CAS  Google Scholar 

  4. Tokudome Y, Miyasaka A, Nakanishi K, Hanada T (2011) J Sol–Gel Sci Technol 57:269–278

    Article  CAS  Google Scholar 

  5. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) J Nanosci Nanotechnol 6(2):265–288

    CAS  Google Scholar 

  6. Cho EB, Kim D, Jaroniec M (2007) Langmuir 23(23):11844–11849

    Article  CAS  Google Scholar 

  7. Vaudreuil S, Bousmina M, Kaliaguine S, Bonneviot L (2001) Microporous Mesoporous Mater 44–45:249–258

    Article  Google Scholar 

  8. Takahashi R, Sato S, Sodesawa T, Kawakita M, Ogura K (2000) J Phys Chem B 104:12184–12191

    Article  CAS  Google Scholar 

  9. Nakanishi K, Tanaka N (2007) Acc Chem Res 40:863–873

    Article  CAS  Google Scholar 

  10. Nakanishi K (1997) J Porous Mater 4:67–112

    Article  CAS  Google Scholar 

  11. Nakanishi K, Takahashi R, Nagaakane T, Kitayama K, Koheya N, Shikata H, Soga N (2000) J Sol–Gel Sci Technol 17:191–210

    Article  CAS  Google Scholar 

  12. Tokudome Y, Nakanishi K, Kanamori K, Fujita K, Akamatsu H, Hanada T (2009) J Colloid Interface Sci 338:506–513

    Article  CAS  Google Scholar 

  13. Takahashi R, Sato S, Tomiyama S, Ohashi T, Nakamura N (2007) Microporous Mesoporous Mater 98:107–114

    Article  CAS  Google Scholar 

  14. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N (2001) Anal Chem 73:420A–429A

    Article  CAS  Google Scholar 

  15. Cabrera K (2004) J Sep Sci 27:843–852

    Article  CAS  Google Scholar 

  16. Konishi J, Fujita K, Nakanishi K, Hirao K, Morisato K, Miyazaki Sh, Ohira M (2009) J Chromatogr A 1216:7375–7383

    Article  CAS  Google Scholar 

  17. Himaguchi T (2001) Catal Surv Jpn 5:59

    Article  Google Scholar 

  18. Beck C, Mallat T, Burgi T, Baiker A (2001) J Catal 204:428–439

    Article  CAS  Google Scholar 

  19. Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Chem Mater 18:6069–6074

    Article  CAS  Google Scholar 

  20. Takahashi R, Sato S, Sodesawa T, Yabuki M (2001) J Catal 200:197–202

    Article  CAS  Google Scholar 

  21. Takahashi R, Nakanishi K, Soga N (1997) J Sol–Gel Sci Technol 8:71–76

    CAS  Google Scholar 

  22. Takahashi R, Sato S, Sodesawa T, Kato M, Yoshida S (2000) J Sol–Gel Sci Technol 19:715–718

    Article  CAS  Google Scholar 

  23. Takahashi R, Sato S, Sodesawa T, Arai K, Yabuki M (2005) J Catal 229:24–29

    Article  CAS  Google Scholar 

  24. Nakamura N, Takahashi R, Sato S, Sodesawa T, Yoshida S (2000) Phys Chem Chem Phys 2:4983–4990

    Article  CAS  Google Scholar 

  25. Sato S, Takahashi R, Sodesawa T, Kobata M (2005) Appl Catal A:Gen 284:247–251

    Article  CAS  Google Scholar 

  26. Yabuki M, Takahashi R, Sato S, Sodesawa T, Ogura K (2002) Phys Chem Chem Phys 4:4830–4837

    Article  CAS  Google Scholar 

  27. Zhu H, Pan Z, Chen B, Lee B, Mahurin SM, Overbury SH, Dai S (2004) J Phys Chem B 108:20038–20044

    Article  CAS  Google Scholar 

  28. Tang J, Liu J, Yang J, Feng Z, Fan F, Yang Q (2009) J Colloid Interface Sci 335:203–209

    Article  CAS  Google Scholar 

  29. Kim WI, Hong IK (2003) J Ind Eng Chem 9(6):728–734

    CAS  Google Scholar 

  30. Melero JA, Arsuaga JM, Frutos PG, Iglesias J, Sainz J, Blazquez S (2005) Microporous Mesoporous Mater 86:364–373

    Article  CAS  Google Scholar 

  31. Zhang WH, Lu JQ, Han B, Li MJ, Xiu JH, Ying PL, Li C (2002) Chem Mater 14:3413–3421

    Article  CAS  Google Scholar 

  32. Liu G, Liu Y, Yang G, Li S, Zu Y, Zhang W, Jia M (2009) J Phys Chem C 113:9345–9351

    Article  CAS  Google Scholar 

  33. Chena HJ, Wang L, Chiu WY (2007) Mater Chem Phys 101:12–19

    Article  Google Scholar 

  34. Brinker CJ, Scherer GW (1990) Sol–gel science. The physics and chemistry of sol–gel processing. Academic Press, New York

    Google Scholar 

  35. Rupp W, Husing N, Schubert U (2002) J Mater Chem 12:2594–2596

    Article  CAS  Google Scholar 

  36. Lenza RFS, Vasconcelos WL (2002) Mater Res 5:497–502

    Article  Google Scholar 

  37. Nakanishi K, Motowaki S, Soga N (1992) Bull Inst Chem Res Kyoto Univ 70:144–151

    CAS  Google Scholar 

  38. Nakanishi K, Komura H, Takahashi R, Soga N (1994) Bull Chem Soc Jpn 67:1327

    Article  CAS  Google Scholar 

  39. Nakanishi K, Soga N (1997) Bull Chem Soc Jpn 70:587–592

    Article  CAS  Google Scholar 

  40. Chen X, Mao SS (2007) Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  41. Takahashi R, Sato S, Sodesawa T, Suzuki M, Ogura K (2000) Bull Chem Soc Jpn 73:765–774

    Article  CAS  Google Scholar 

  42. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Academic Press, San-Diego

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by Industrial Research Grant Program in 04A25503c from New Energy and Industrial Technology Development Organization (NEDO) of Japan and the Grant-in-Aid for Scientific Research C (21560700) from the Japan Society for the Promotion of Science. O. R. appreciates deeply the research fellowship from Matsumae International Foundation, Japan (09G09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olim Ruzimuradov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruzimuradov, O., Nurmanov, S., Kodani, Y. et al. Morphology and dispersion control of titania–silica monolith with macro–meso pore system. J Sol-Gel Sci Technol 64, 684–693 (2012). https://doi.org/10.1007/s10971-012-2903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2903-7

Keywords

Navigation