Skip to main content

Advertisement

Log in

Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

After the implantation of dental implants or orthopedic device, there is a “race for the surface,” a competitive battle between bacteria and host cells for the occupation of the implant surface. Various antibacterial and antibiotic agents have been developed to assist host tissue cells in winning this battle. However, these agents come with drawbacks, such as the potential to generate antibiotic resistance. Metal and metal oxide nanoparticles (NPs) have demonstrated their versatility, functioning as effective antimicrobial coatings, and flexible biomaterials with both osteoconductive and osteoinductive characteristics. In this review article will focus on the basics of implant infection and biofilm formation, followed by a discussion of antibiotic resistance, which favors bacteria, and strategies to reduce antibiotic resistance. Metal and metal oxide NPs and their expanding role in dental and orthopedic therapeutics will be discussed comprehensively. The article will focus on the potential for using metal and metal oxide NPs that integrate antimicrobial properties with osteoinductive/osteoconductive characteristics. Current advances and developments in the application of metal NPs will occupy the bulk of this review, which will conclude with a discussion of the challenges associated with metal and metal oxide NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from reference [6] with permission)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

(Adapted from reference [182] with permission)

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. G. Shineh, K. Patel, M. Mobaraki, L. Tayebi, Functional approaches in promoting vascularization and angiogenesis in bone critical-sized defects via delivery of cells, growth factors, drugs, and particles. J. Funct. Biomater. 14, 99 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Bose, N. Sarkar, D. Banerjee, Natural medicine delivery from biomedical devices to treat bone disorders: a review. Acta Biomater. 126, 63–91 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Bose, D. Banerjee, A. Bandyopadhyay, Introduction to biomaterials and devices for bone disorders, in Materials for Bone Disorders. (Elsevier, 2017), pp.1–27

    Google Scholar 

  4. C. Kiernan, C. Knuth, E. Farrell, Endochondral ossification: recapitulating bone development for bone defect repair, in Developmental Biology and Musculoskeletal Tissue Engineering. (Elsevier, 2018), pp.125–148

    Chapter  Google Scholar 

  5. D. Smrke, P. Rožman, M. Veselko, B. Gubina, Treatment of bone defects—allogenic platelet gel and autologous bone technique, in Regenerative Medicine and Tissue Engineering. (IntechOpen, 2013)

    Google Scholar 

  6. Q. Shen, Y. Qi, Y. Kong, H. Bao, Y. Wang, A. Dong, H. Wu, Y. Xu, Advances in copper-based biomaterials with antibacterial and osteogenic properties for bone tissue engineering. Front. Bioeng. Biotechnol. 9, 795425 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  7. G. Shineh, M. Mobaraki, M.J. Perves Bappy, D.K. Mills, Biofilm formation, and related impacts on healthcare, food processing and packaging, industrial manufacturing, marine industries, and sanitation—a review. Appl. Microbiol. 3, 629–665 (2023)

    Article  Google Scholar 

  8. H. van de Belt, D. Neut, W. Schenk, J.R. van Horn, H.C. van der Mei, H.J. Busscher, Infection of orthopedic implants and the use of antibiotic-loaded bone cements: a review. Acta Orthop. Scand. 72, 557–571 (2001)

    Article  PubMed  Google Scholar 

  9. M. Vallet-Regí, D. Lozano, B. González, I. Izquierdo-Barba, Biomaterials against bone infection. Adv. Healthcare Mater. 9, 2000310 (2020)

    Article  Google Scholar 

  10. S. Hashemi, L. Mohammadi Amirabad, S. Farzad-Mohajeri, M. Rezai Rad, F. Fahimipour, A. Ardeshirylajimi, E. Dashtimoghadam, M. Salehi, M. Soleimani, M.M. Dehghan, Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds. Cell Tissue Res. 384, 403–421 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. A. Nauth, E. Schemitsch, B. Norris, Z. Nollin, J.T. Watson, Critical-size bone defects: is there a consensus for diagnosis and treatment? J. Orthop. Trauma 32, S7–S11 (2018)

    Article  PubMed  Google Scholar 

  12. B. Malik, S. Bhattacharyya, Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep. 9, 9788 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  13. H. Schell, G. Duda, A. Peters, S. Tsitsilonis, K. Johnson, K. Schmidt-Bleek, The haematoma and its role in bone healing. J. Exp. Orthop. 4, 5 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E.R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, R. Wunderling, MIP: theory and practice—closing the gap, in IFIP Conference on System Modeling and Optimization. (Springer, 1999), pp.19–49

    Google Scholar 

  15. M.I. Hutchings, A.W. Truman, B. Wilkinson, Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. M. Terreni, M. Taccani, M. Pregnolato, New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules 26, 2671 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Davies, D. Davies, Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Abbasi, G. Shineh, M. Mobaraki, S. Doughty, L. Tayebi, Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J. Nanopart. Res. 25, 43 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 15, 2555–2562 (2020)

    Article  CAS  Google Scholar 

  20. S.V. Gudkov, D.E. Burmistrov, D.A. Serov, M.B. Rebezov, A.A. Semenova, A.B. Lisitsyn, A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 641481 (2021)

    Article  Google Scholar 

  21. R. Dadi, R. Azouani, M. Traore, C. Mielcarek, A. Kanaev, Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C 104, 109968 (2019)

    Article  CAS  Google Scholar 

  22. G. Shineh, S.S. Kordestani, M. Tahriri, L. Tayebi, Evaluation of L929 cell morphology on anthocyanin-containing gelatin-based hydrogel for early detection of infection. Bio-Design Manuf. 2, 181–186 (2019)

    Article  CAS  Google Scholar 

  23. R. Eivazzadeh-Keihan, E. Bahojb Noruzi, K. Khanmohammadi Chenab, A. Jafari, F. Radinekiyan, S.M. Hashemi, F. Ahmadpour, A. Behboudi, J. Mosafer, A. Mokhtarzadeh, Metal-based nanoparticles for bone tissue engineering. J. Tissue Eng. Regen. Med. 14, 1687–1714 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. B. Beamer, C. Hettrich, J. Lane, Vascular endothelial growth factor: an essential component of angiogenesis and fracture healing. HSS J. 6, 85–94 (2010)

    Article  PubMed  Google Scholar 

  25. E.H. Schemitsch, Size matters: defining critical in bone defect size! J. Orthop. Trauma 31, S20–S22 (2017)

    Article  PubMed  Google Scholar 

  26. N.G. Lasanianos, N.K. Kanakaris, P.V. Giannoudis, Current management of long bone large segmental defects. Orthop. Trauma 24, 149–163 (2010)

    Article  Google Scholar 

  27. A. Masquelet, F. Fitoussi, T. Begue, G. Muller, Reconstruction of the long bones by the induced membrane and spongy autograft. Ann. Chir. Plast. Esthet. 45, 346–353 (2000)

    CAS  PubMed  Google Scholar 

  28. T. Albrektsson, C. Johansson, Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10, S96–S101 (2001)

    Article  PubMed  PubMed Central  Google Scholar 

  29. A. Stahl, Y.P. Yang, Regenerative approaches for the treatment of large bone defects. Tissue Eng. Part B Rev. 27, 539–547 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  30. P. Baldwin, D.J. Li, D.A. Auston, H.S. Mir, R.S. Yoon, K.J. Koval, Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J. Orthop. Trauma 33, 203–213 (2019)

    Article  PubMed  Google Scholar 

  31. L. Coquelin, A. Fialaire-Legendre, S. Roux, A. Poignard, P. Bierling, P. Hernigou, N. Chevallier, H. Rouard, In vivo and in vitro comparison of three different allografts vitalized with human mesenchymal stromal cells. Tissue Eng. Part A 18, 1921–1931 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. A. Nauth, M.D. McKee, T.A. Einhorn, J.T. Watson, R. Li, E.H. Schemitsch, Managing bone defects. J. Orthop. Trauma 25, 462–466 (2011)

    Article  PubMed  Google Scholar 

  33. C. Laurencin, Y. Khan, S.F. El-Amin, Bone graft substitutes. Expert Rev. Med. Devices 3, 49–57 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. H.J. Mankin, F.J. Hornicek, K.A. Raskin, Infection in massive bone allografts. Clin. Orthop. Relat. Res. 432, 210–216 (2005)

    Article  Google Scholar 

  35. C. Dong, Y. Lv, Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8, 42 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  36. M.S.B. Reddy, D. Ponnamma, R. Choudhary, K.K. Sadasivuni, A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 13, 1105 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. F. Baino, G. Novajra, C. Vitale-Brovarone, Bioceramics and scaffolds: a winning combination for tissue engineering. Front. Bioeng. Biotechnol. 3, 202 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  38. A. Abdal-hay, N. Abbasi, M. Gwiazda, S. Hamlet, S. Ivanovski, Novel polycaprolactone/hydroxyapatite nanocomposite fibrous scaffolds by direct melt-electrospinning writing. Eur. Polymer J. 105, 257–264 (2018)

    Article  CAS  Google Scholar 

  39. B. Huzum, B. Puha, R.M. Necoara, S. Gheorghevici, G. Puha, A. Filip, P.D. Sirbu, O. Alexa, Biocompatibility assessment of biomaterials used in orthopedic devices: an overview. Exp. Ther. Med. 22, 1–9 (2021)

    Article  Google Scholar 

  40. D.-J. Lee, J.-M. Lee, E.-J. Kim, T. Takata, Y. Abiko, T. Okano, D.W. Green, M. Shimono, H.-S. Jung, Bio-implant as a novel restoration for tooth loss. Sci. Rep. 7, 7414 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  41. R. Branemark, P. Branemark, B. Rydevik, R.R. Myers, Osseointegration in skeletal reconstruction and rehabilitation: a review. J. Rehabil. Res. Dev. 38, 175–182 (2001)

    CAS  PubMed  Google Scholar 

  42. W. Becker, P.P. Hujoel, B.E. Becker, H. Willingham, Osteoporosis and implant failure: an exploratory case-control study. J. Periodontol. 71, 625–631 (2000)

    Article  CAS  PubMed  Google Scholar 

  43. J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials, in Seminars in Immunology. (Elsevier, 2008), pp.86–100

    Google Scholar 

  44. W. Zimmerli, Clinical presentation and treatment of orthopaedic implant-associated infection. J. Intern. Med. 276, 111–119 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. B. Ercan, K.M. Kummer, K.M. Tarquinio, T.J. Webster, Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomater. 7, 3003–3012 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. B. Meyer, Approaches to prevention, removal and killing of biofilms. Int. Biodeterior. Biodegradation 51, 249–253 (2003)

    Article  CAS  Google Scholar 

  47. M. Ribeiro, F.J. Monteiro, M.P. Ferraz, Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial–material interactions. Biomatter 2, 176–194 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  48. N. Rabin, Y. Zheng, C. Opoku-Temeng, Y. Du, E. Bonsu, H.O. Sintim, Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 7, 493–512 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. P. Sanderson, Infection in orthopaedic implants. J. Hosp. Infect. 18, 367–375 (1991)

    Article  PubMed  Google Scholar 

  50. M.H. Muhammad, A.L. Idris, X. Fan, Y. Guo, Y. Yu, X. Jin, J. Qiu, X. Guan, T. Huang, Beyond risk: bacterial biofilms and their regulating approaches. Front. Microbiol. 11, 928 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  51. D.H. Limoli, C.J. Jones, D.J. Wozniak, Bacterial extracellular polysaccharides in biofilm formation and function. Microbial Biofilms 3, 223–247 (2015)

    Article  Google Scholar 

  52. D. Sharma, L. Misba, A.U. Khan, Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Contr. 8, 1–10 (2019)

    Google Scholar 

  53. H.-C. Flemming, T.R. Neu, D.J. Wozniak, The EPS matrix: the “house of biofilm cells.” J. Bacteriol. 189, 7945–7947 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. L. Lu, W. Hu, Z. Tian, D. Yuan, G. Yi, Y. Zhou, Q. Cheng, J. Zhu, M. Li, Developing natural products as potential anti-biofilm agents. Chin. Med. 14, 1–17 (2019)

    Article  Google Scholar 

  55. M. Crouzet, C. Le Senechal, V.S. Brözel, P. Costaglioli, C. Barthe, M. Bonneu, B. Garbay, S. Vilain, Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiol. 14, 1–12 (2014)

    Article  Google Scholar 

  56. M.-I. Thoulouze, A. Alcover, Can viruses form biofilms? Trends Microbiol. 19, 257–262 (2011)

    Article  CAS  PubMed  Google Scholar 

  57. S. Besharati, P. Farnia, P. Farnia, J. Ghanavi, A.A. Velayati, Investigation of the hypothesis of biofilm formation in coronavirus (COVID-19). Biomed. Biotechnol. Res. J. 4, S99–S100 (2020)

    Article  Google Scholar 

  58. M. Hage, S. Khelissa, H. Akoum, N.-E. Chihib, C. Jama, Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Appl. Microbiol. Biotechnol. 106, 81–100 (2022)

    Article  CAS  PubMed  Google Scholar 

  59. W.-L. Yao, J.C.Y. Lin, E. Salamanca, Y.-H. Pan, P.-Y. Tsai, S.-J. Leu, K.-C. Yang, H.-M. Huang, H.-Y. Huang, W.-J. Chang, Er,Cr:YSGG laser performance improves biological response on titanium surfaces. Materials 13, 756 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. G.A. James, L. Boegli, J. Hancock, L. Bowersock, A. Parker, B.M. Kinney, Bacterial adhesion and biofilm formation on textured breast implant shell materials. Aesthetic Plast. Surg. 43, 490–497 (2019)

    Article  PubMed  Google Scholar 

  61. S. Aryal, Different size, shape and arrangement of bacterial cells, Microbiology Notes (2015), http://www.microbiologyinfo.com/different-size-shape-andarrangement-of-bacterial-cells

  62. M. Buchanan, Sizing up bacteria. Nat. Phys. 10, 788–788 (2014)

    Article  CAS  Google Scholar 

  63. K. Manabe, S. Nishizawa, S. Shiratori, Porous surface structure fabricated by breath figures that suppresses Pseudomonas aeruginosa biofilm formation. ACS Appl. Mater. Interfaces. 5, 11900–11905 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. S. Wu, S. Altenried, A. Zogg, F. Zuber, K. Maniura-Weber, Q. Ren, Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation. ACS Omega 3, 6456–6464 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Lorenzetti, I. Dogša, T.A. Stošicki, D. Stopar, M. Kalin, S. Kobe, S.A. Novak, The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl. Mater. Interfaces 7, 1644–1651 (2015)

    Article  CAS  PubMed  Google Scholar 

  66. C. Do Nascimento, C. Da Rocha Aguiar, M.S. Pita, V. Pedrazzi, R.F. de Albuquerque Jr, R.F. Ribeiro, Oral biofilm formation on the titanium and zirconia substrates. Microsc. Res. Technique 76, 126–132 (2013)

    Article  CAS  Google Scholar 

  67. O. Rzhepishevska, S. Hakobyan, R. Ruhal, J. Gautrot, D. Barbero, M. Ramstedt, The surface charge of anti-bacterial coatings alters motility and biofilm architecture. Biomater. Sci. 1, 589–602 (2013)

    Article  CAS  PubMed  Google Scholar 

  68. D. Montag, M. Frant, H. Horn, K. Liefeith, Dependence of the initial adhesion of biofilm forming Pseudomonas putida mt2 on physico-chemical material properties. Biofouling 28, 315–327 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. Z.A. Mirani, A. Fatima, S. Urooj, M. Aziz, M.N. Khan, T. Abbas, Relationship of cell surface hydrophobicity with biofilm formation and growth rate: a study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Iran. J. Basic Med. Sci. 21, 760 (2018)

    PubMed  PubMed Central  Google Scholar 

  70. J.K. Oh, Y. Yegin, F. Yang, M. Zhang, J. Li, S. Huang, S.V. Verkhoturov, E.A. Schweikert, K. Perez-Lewis, E.A. Scholar, The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Sci. Rep. 8, 17247 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  71. B. Shokeen, L. Zamani, S. Zadmehr, S. Pouraghaie, R. Ozawa, B. Yilmaz, S. Lilak, S. Sharma, T. Ogawa, A. Moshaverinia, Surface characterization and assessment of biofilm formation on two titanium-based implant coating materials. Front. Dent. Med. 2, 695417 (2021)

    Article  Google Scholar 

  72. S. Roehling, M. Astasov-Frauenhoffer, I. Hauser-Gerspach, O. Braissant, H. Woelfler, T. Waltimo, H. Kniha, M. Gahlert, In vitro biofilm formation on titanium and zirconia implant surfaces. J. Periodontol. 88, 298–307 (2017)

    Article  CAS  PubMed  Google Scholar 

  73. P. Parreira, A. Magalhães, I.C. Gonçalves, J. Gomes, R. Vidal, C.A. Reis, D.E. Leckband, M.C.L. Martins, Effect of surface chemistry on bacterial adhesion, viability, and morphology. J. Biomed. Mater. Res., Part A 99, 344–353 (2011)

    Article  Google Scholar 

  74. P. Amdjadi, H. Nojehdehian, F. Najafi, A. Ghasemi, M. Seifi, E. Dashtimoghadam, F. Fahimipour, L. Tayebi, Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties. J. Biomater. Appl. 32, 3–11 (2017)

    Article  CAS  PubMed  Google Scholar 

  75. H. Vögeling, L. Duse, B.S. Seitz, N. Plenagl, M. Wojcik, S.R. Pinnapireddy, U. Bakowsky, Multilayer bacteriostatic coating for surface modified titanium implants. Phys. Status Solidi a 215, 1700844 (2018)

    Article  Google Scholar 

  76. U. Ajdnik, L.F. Zemljič, O. Plohl, L. Pérez, J. Trček, M. Bračič, T. Mohan, Bioactive functional nanolayers of chitosan-lysine surfactant with single- and mixed-protein-repellent and antibiofilm properties for medical implants. ACS Appl. Mater. Interfaces. 13, 23352–23368 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. T. San, O.C. Ertugay, T. Catli, M. Acar, C.K. Ertugay, I. Dag, C. Cingi, Effects of surfactant on biofilm formation on silicone nasal splints. Eur. Arch. Otorhinolaryngol. 272, 345–349 (2015)

    Article  PubMed  Google Scholar 

  78. Z. Xu, S. Krajewski, T. Weindl, R. Loeffler, P. Li, X. Han, J. Geis-Gerstorfer, H.-P. Wendel, L. Scheideler, F. Rupp, Application of totarol as natural antibacterial coating on dental implants for prevention of peri-implantitis. Mater. Sci. Eng. C 110, 110701 (2020)

    Article  CAS  Google Scholar 

  79. M. Kurakula, N.R. Naveen, Electrospraying: a facile technology unfolding the chitosan based drug delivery and biomedical applications. Eur. Polymer J. 147, 110326 (2021)

    Article  CAS  Google Scholar 

  80. V. Ständert, K. Borcherding, N. Bormann, G. Schmidmaier, I. Grunwald, B. Wildemann, Antibiotic-loaded amphora-shaped pores on a titanium implant surface enhance osteointegration and prevent infections. Bioactive Mater. 6, 2331–2345 (2021)

    Article  Google Scholar 

  81. J.G.S. Souza, M.M. Bertolini, R.C. Costa, B.E. Nagay, A. Dongari-Bagtzoglou, V.A.R. Barão, Targeting implant-associated infections: titanium surface loaded with antimicrobial. IScience 24, 102008 (2021)

    Article  CAS  PubMed  Google Scholar 

  82. M. Lucke, G. Schmidmaier, S. Sadoni, B. Wildemann, R. Schiller, N. Haas, M. Raschke, Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 32, 521–531 (2003)

    Article  CAS  PubMed  Google Scholar 

  83. M. Kazemzadeh-Narbat, J. Kindrachuk, K. Duan, H. Jenssen, R.E. Hancock, R. Wang, Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31, 9519–9526 (2010)

    Article  CAS  PubMed  Google Scholar 

  84. S. Sánchez-Gómez, G. Martinez-de-Tejada, Antimicrobial peptides as anti-biofilm agents in medical implants. Curr. Top. Med. Chem. 17, 590–603 (2017)

    Article  PubMed  Google Scholar 

  85. M. Pihl, S. Galli, R. Jimbo, M. Andersson, Osseointegration and antibacterial effect of an antimicrobial peptide releasing mesoporous titania implant. J. Biomed. Mater. Res. B Appl. Biomater. 109, 1787–1795 (2021)

    Article  CAS  PubMed  Google Scholar 

  86. A. Pugazhendhi, S. Vasantharaj, S. Sathiyavimal, R.K. Raja, I. Karuppusamy, M. Narayanan, S. Kandasamy, K. Brindhadevi, Organic and inorganic nanomaterial coatings for the prevention of microbial growth and infections on biotic and abiotic surfaces. Surf. Coat. Technol. 425, 127739 (2021)

    Article  CAS  Google Scholar 

  87. A. Motealleh, P. Dorri, M. Czieborowski, B. Philipp, N.S. Kehr, Bifunctional nanomaterials for simultaneously improving cell adhesion and affecting bacterial biofilm formation on silicon-based surfaces. Biomed. Mater. 16, 025013 (2021)

    Article  CAS  PubMed  Google Scholar 

  88. R. Arjunkumar, Nanomaterials for the management of periodontal diseases (Springer, Dental Applications of Nanotechnology, 2018), pp.203–215

    Google Scholar 

  89. C. Zhao, L. Zhou, M. Chiao, W. Yang, Antibacterial hydrogel coating: strategies in surface chemistry. Adv. Coll. Interface. Sci. 285, 102280 (2020)

    Article  CAS  Google Scholar 

  90. Q. Zhao, Y. Liu, C. Wang, S. Wang, N. Peng, C. Jeynes, Reduction of bacterial adhesion on ion-implanted stainless steel surfaces. Med. Eng. Phys. 30, 341–349 (2008)

    Article  CAS  PubMed  Google Scholar 

  91. Q. Zhao, Y. Liu, C. Wang, S. Wang, N. Peng, C. Jeynes, Bacterial adhesion on ion-implanted stainless steel surfaces. Appl. Surf. Sci. 253, 8674–8681 (2007)

    Article  CAS  Google Scholar 

  92. J. Buxadera-Palomero, M. Godoy-Gallardo, M. Molmeneu, M. Punset, F.J. Gil, Antibacterial properties of triethoxysilylpropyl succinic anhydride silane (TESPSA) on titanium dental implants. Polymers 12, 773 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. M. Pilz, K. Staats, S. Tobudic, O. Assadian, E. Presterl, R. Windhager, J. Holinka, Zirconium nitride coating reduced Staphylococcus epidermidis biofilm formation on orthopaedic implant surfaces: an in vitro study. Clin. Orthop. Relat. Res. 477, 461 (2019)

    Article  PubMed  Google Scholar 

  94. P.C. Bonez, C.F. dos Santos Alves, T.V. Dalmolin, V.A. Agertt, C.R. Mizdal, V. da Costa Flores, J.B. Marques, R.C.V. Santos, M.M.A. de Campos, Chlorhexidine activity against bacterial biofilms. Am. J. Infect. Control 41, e119–e122 (2013)

    Article  CAS  PubMed  Google Scholar 

  95. M.Q. Mesquita, C.J. Dias, M.G.P.M.S. Neves, A. Almeida, M.A.F. Faustino, Revisiting current photoactive materials for antimicrobial photodynamic therapy. Molecules 23, 2424 (2018)

    Article  Google Scholar 

  96. G.M. Esteves, J. Esteves, M. Resende, L. Mendes, A.S. Azevedo, Antimicrobial and antibiofilm coating of dental implants—past and new perspectives. Antibiotics 11, 235 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. J. Li, M.A. Kacena, D.L. Stocum, Fracture healing, in Basic and Applied Bone Biology. (Elsevier, 2019), pp.235–253

    Chapter  Google Scholar 

  98. O. Sharifahmadian, C. Zhai, J. Hung, G. Shineh, C.A. Stewart, A.A. Fadzil, M. Ionescu, Y. Gan, S.G. Wise, B. Akhavan, Mechanically robust nitrogen-rich plasma polymers: biofunctional interfaces for surface engineering of biomedical implants. Mater. Today Adv. 12, 100188 (2021)

    Article  CAS  Google Scholar 

  99. A. Stavrakis, S. Zhu, A. Loftin, X. Weixian, J. Niska, V. Hegde, T. Segura, N. Bernthal, Controlled release of vancomycin and tigecycline from an orthopaedic implant coating prevents Staphylococcus aureus infection in an open fracture animal model. BioMed Res. Int. 2019, 1638508 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. N. Woodford, M.J. Ellington, The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 13, 5–18 (2007)

    Article  CAS  PubMed  Google Scholar 

  101. C.L. Ventola, The antibiotic resistance crisis: Part 1: Causes and threats. P. T. 40, 277 (2015)

    PubMed  PubMed Central  Google Scholar 

  102. J.M. Munita, C.A. Arias, Mechanisms of antibiotic resistance, in Virulence Mechanisms of Bacterial Pathogens. (Wiley, 2016), pp.481–511

    Chapter  Google Scholar 

  103. W.C. Reygaert, An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4, 482 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. L.F. Westblade, J. Errington, T. Dörr, Antibiotic tolerance. PLoS Pathog. 16, e1008892 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. I. Olsen, Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34, 877–886 (2015)

    Article  CAS  PubMed  Google Scholar 

  106. A. Brauner, O. Fridman, O. Gefen, N.Q. Balaban, Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016)

    Article  CAS  PubMed  Google Scholar 

  107. B. Li, T.J. Webster, Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 36, 22–32 (2018)

    Article  PubMed  Google Scholar 

  108. J.M. Farrell, C.Y. Zhao, K.M. Tarquinio, S.P. Brown, Causes and consequences of COVID-19-associated bacterial infections. Front. Microbiol. 12, 682571 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  109. B.J. Langford, M. So, S. Raybardhan, V. Leung, D. Westwood, D.R. MacFadden, J.-P.R. Soucy, N. Daneman, Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin. Microbiol. Infect. 26, 1622–1629 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. T.M. Rawson, R.C. Wilson, A. Holmes, Understanding the role of bacterial and fungal infection in COVID-19. Clin. Microbiol. Infect. 27, 9–11 (2021)

    Article  CAS  PubMed  Google Scholar 

  111. Y. Fu, Q. Yang, M. Xu, H. Kong, H. Chen, Y. Fu, Y. Yao, H. Zhou, J. Zhou, Secondary bacterial infections in critical ill patients with coronavirus disease 2019, in Open Forum Infectious Diseases. (Oxford University Press US, 2020), p.ofaa220

    Google Scholar 

  112. R. Mirzaei, P. Goodarzi, M. Asadi, A. Soltani, H.A.A. Aljanabi, A.S. Jeda, S. Dashtbin, S. Jalalifar, R. Mohammadzadeh, A. Teimoori, Bacterial co-infections with SARS-CoV-2. IUBMB Life 72, 2097–2111 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. E. Sharifipour, S. Shams, M. Esmkhani, J. Khodadadi, R. Fotouhi-Ardakani, A. Koohpaei, Z. Doosti, S. Ej Golzari, Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis. 20, 1–7 (2020)

    Article  Google Scholar 

  114. D.A. Kennedy, A.F. Read, Monitor for COVID-19 vaccine resistance evolution during clinical trials. PLoS Biol. 18, e3001000 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. D.A. Kennedy, A.F. Read, Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proc. Natl. Acad. Sci. U. S. A. 115, 12878–12886 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. A. Staroń, O. Długosz, Antimicrobial properties of nanoparticles in the context of advantages and potential risks of their use. J. Environ. Sci. Health Part A 56, 680–693 (2021)

    Article  Google Scholar 

  117. P. Singh, I. Mijakovic, Strong antimicrobial activity of silver nanoparticles obtained by the green synthesis in Viridibacillus sp. extracts. Front. Microbiol. 13, 820048 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  118. F. Amaro, Á. Morón, S. Díaz, A. Martín-González, J.C. Gutiérrez, Metallic nanoparticles—friends or foes in the battle against antibiotic-resistant bacteria? Microorganisms 9, 364 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10, 292 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  120. L. Lv, Y. Luo, W.J. Ng, X. Zhao, Bactericidal activity of silver nanoparticles supported on microporous titanosilicate ETS-10. Microporous Mesoporous Mater. 120, 304–309 (2009)

    Article  CAS  Google Scholar 

  121. T.C. Dakal, A. Kumar, R.S. Majumdar, V. Yadav, Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7, 1831 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  122. A.C. Quevedo, I. Lynch, E. Valsami-Jones, Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. Nanoscale 13, 6142–6161 (2021)

    Article  CAS  PubMed  Google Scholar 

  123. A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, M. Šebela, R. Prucek, O. Tomanec, Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 13, 65–71 (2018)

    Article  PubMed  Google Scholar 

  124. K.E. Mokobia, I.H. Ifijen, E.U. Ikhuoria, ZnO-NPs-coated implants with osteogenic properties for enhanced osseointegration, in TMS Annual Meeting & Exhibition. (Springer, 2023), pp.288–300

    Google Scholar 

  125. M. Ziąbka, K. Matysiak, K. Cholewa-Kowalska, A. Kyzioł, A. Królicka, R. Sapierzyński, M. Januchta-Kurmin, I. Bissenik, In vitro and in vivo studies of antibacterial coatings on titanium alloy implants for veterinary application. Int. J. Mol. Sci. 24, 8114 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  126. S.-L. Bee, Y. Bustami, A. Ul-Hamid, K. Lim, Z. Abdul Hamid, Synthesis of silver nanoparticle-decorated hydroxyapatite nanocomposite with combined bioactivity and antibacterial properties. J. Mater. Sci. Mater. Med. 32, 106 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. M. Rothpan, N. Chandra Teja Dadi, G. McKay, M. Tanzer, D. Nguyen, A. Hart, M. Tabrizian, Titanium-dioxide-nanoparticle-embedded polyelectrolyte multilayer as an osteoconductive and antimicrobial surface coating. Materials 16, 7026 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. M. Pandey, A.S. Verma, P. Pandey, R.J. Narayan, Bone tissue engineering application of 3-aminopropyltrimethoxysilane functionalized Au/Ag bimetallic nanoparticles incorporated hydroxyapatite bioceramic. J. Mater. Res. 38, 4157–4174 (2023)

    Article  CAS  Google Scholar 

  129. R. Gangadharan, A. Natarajan, S. Joshi, J.A. Ethiraj, A comparative evaluation of chitosan biopolymer permeated nanohydroxyapatite composite loaded with copper and gold metal nanoparticles for bone tissue regeneration. Lat. Am. J. Pharm. 42, 230–247 (2023)

    Google Scholar 

  130. C. Huang, Q. Ye, J. Dong, L. Li, M. Wang, Y. Zhang, Y. Zhang, X. Wang, P. Wang, Q. Jiang, Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation. Smart Mater. Med. 4, 1–14 (2023)

    Article  Google Scholar 

  131. H.-I. Kim, N. Raja, J. Kim, A. Sung, Y.-J. Choi, H.-S. Yun, H. Park, A 3D calcium-deficient hydroxyapatite-based scaffold with gold nanoparticles effective against Micrococcus luteus as an artificial bone substitute. Mater. Des. 219, 110793 (2022)

    Article  CAS  Google Scholar 

  132. M. Mira, A. Wibowo, G.U.N. Tajalla, G. Cooper, P.J.D.S. Bartolo, A. Barlian, Osteogenic potential of a 3D printed silver nanoparticle-based electroactive scaffold for bone tissue engineering using human Wharton’s jelly mesenchymal stem cells, Mater. Adv. (2023)

  133. G. Prado-Prone, P. Silva-Bermudez, S.E. Rodil, Y. Ganjkhani, A.-R. Moradi, F.J. Méndez, J.A. García-Macedo, M. Bazzar, A. Almaguer-Flores, ZnO nanoparticles-modified polycaprolactone-gelatin membranes for guided/bone tissue regeneration, antibacterial and osteogenic differentiation properties. Biomed. Phys. Eng. Express 9, 035011 (2023)

    Article  Google Scholar 

  134. S. Sarfaraz, A. Khan, F. Hameed, A. Arshad, Z. Mutahir, R. Zeeshan, K. Ijaz, A.A. Chaudhry, H. Khalid, I. Rehman, Osteogenic and antibacterial scaffolds of silk fibroin/Ce-doped ZnO for bone tissue engineering. Int J Polym. Mater. Polym. Biomater. 72, 1205–1216 (2023)

    Article  CAS  Google Scholar 

  135. X. Wang, F. Shi, D. Zhao, Y. Yan, Effect of ZnO-doped magnesium phosphate cements on osteogenic differentiation of mBMSCs in vitro. J. Appl. Biomater. Funct. Mater. 20, 22808000221136370 (2022)

    PubMed  Google Scholar 

  136. S. Shariati, E. Seyedjafari, F.S. Mahdavi, A. Maali, E. Ferdosi-Shahandashti, NiFe2O4/ZnO-coated Poly(l-Lactide) nanofibrous scaffold enhances osteogenic differentiation of human mesenchymal stem cells. Front. Bioeng. Biotechnol. 10, 1005028 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  137. J. Li, J. Wen, B. Li, W. Li, W. Qiao, J. Shen, W. Jin, X. Jiang, K.W. Yeung, P.K. Chu, Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation. Adv. Sci. 5, 1700678 (2018)

    Article  Google Scholar 

  138. G.-M. Goldschmidt, M. Krok-Borkowicz, R. Zybała, E. Pamuła, R. Telle, G. Conrads, K. Schickle, Biomimetic in situ precipitation of calcium phosphate containing silver nanoparticles on zirconia ceramic materials for surface functionalization in terms of antimicrobial and osteoconductive properties. Dent. Mater. 37, 10–18 (2021)

    Article  CAS  PubMed  Google Scholar 

  139. S. Huo, S. Jin, X. Ma, X. Xue, K. Yang, A. Kumar, P.C. Wang, J. Zhang, Z. Hu, X.-J. Liang, Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 8, 5852–5862 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. E. Afzali, T. Eslaminejad, B. Amirheidari, M. Ansari, Cell immobilization of Streptomyces griseobrunneus by microcrystalline cellulose for production of cyclodextrin glucanotransferase enzyme. Cogent Eng. 8, 1868145 (2021)

    Article  Google Scholar 

  141. E. De Giglio, D. Cafagna, S. Cometa, A. Allegretta, A. Pedico, L. Giannossa, L. Sabbatini, M. Mattioli-Belmonte, R. Iatta, An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Anal. Bioanal. Chem. 405, 805–816 (2013)

    Article  PubMed  Google Scholar 

  142. C.-M. Xie, X. Lu, K.-F. Wang, F.-Z. Meng, O. Jiang, H.-P. Zhang, W. Zhi, L.-M. Fang, Silver nanoparticles and growth factors incorporated hydroxyapatite coatings on metallic implant surfaces for enhancement of osteoinductivity and antibacterial properties. ACS Appl. Mater. Interfaces. 6, 8580–8589 (2014)

    Article  CAS  PubMed  Google Scholar 

  143. I. Gosens, J.A. Post, L.J. de la Fonteyne, E.H. Jansen, J.W. Geus, F.R. Cassee, W.H. de Jong, Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part. Fibre Toxicol. 7, 1–11 (2010)

    Article  Google Scholar 

  144. W.L. Howard, D.A. Wilson, Chelating agents, in Kirk-Othmer Encyclopedia Of Chemical Technology. (Wiley, 2000), pp.887–888

    Google Scholar 

  145. A.K. Riau, T.T. Aung, M. Setiawan, L. Yang, G.H.F. Yam, R.W. Beuerman, S.S. Venkatraman, J.S. Mehta, Surface immobilization of nano-silver on polymeric medical devices to prevent bacterial biofilm formation. Pathogens 8, 93 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. B. Akhavan, S. Bakhshandeh, H. Najafi-Ashtiani, A.C. Fluit, E. Boel, C. Vogely, B.C. Van Der Wal, A.A. Zadpoor, H. Weinans, W.E. Hennink, Direct covalent attachment of silver nanoparticles on radical-rich plasma polymer films for antibacterial applications. J. Mater. Chem. Part B 6, 5845–5853 (2018)

    Article  CAS  Google Scholar 

  147. A. Perumal, S. Kannan, R. Nallaiyan, Silver nanoparticles incorporated polyaniline on TiO2 nanotube arrays: a nanocomposite platform to enhance the biocompatibility and antibiofilm. Surfaces Interfaces 22, 100892 (2021)

    Article  CAS  Google Scholar 

  148. A. Cochis, B. Azzimonti, C. Della Valle, R. Chiesa, C.R. Arciola, L. Rimondini, Biofilm formation on titanium implants counteracted by grafting gallium and silver ions. J. Biomed. Mater. Res. Part A 103, 1176–1187 (2015)

    Article  Google Scholar 

  149. D.K. Riley, D.C. Classen, L.E. Stevens, J.P. Burke, A large randomized clinical trial of a silver-impregnated urinary catheter: lack of efficacy and staphylococcal superinfection. Am. J. Med. 98, 349–356 (1995)

    Article  CAS  PubMed  Google Scholar 

  150. B. Bhaskar, J. Dutta, Shalini, P.V. Mosahari, J. Kalita, P. Buragohain, U. Bora, Nanoparticle-based antimicrobial coating on medical implants, in Nanostructures for Antimicrobial and Antibiofilm Applications. (Springer, 2020), pp.79–99

    Chapter  Google Scholar 

  151. Z.J. Velisdeh, G.D. Najafpour, M. Mohammadi, F. Poureini, Optimization of sequential microwave-ultrasound-assisted extraction for maximum recovery of quercetin and total flavonoids from red onion (Allium cepa L.) skin wastes, arXiv preprint arXiv:2104.06109 (2021)

  152. M. Arularasu, B. Venkatadri, A. Muthukrishnaraj, T. Rajendran, K. Qi, K. Kaviyarasu, H2O2 scavenging and biocompatibility assessment of biosynthesized cellulose/Fe3O4 nanocomposite showed superior antioxidant properties with increasing concentration. J. Mol. Struct. 2023, 135838 (2023)

    Article  Google Scholar 

  153. H. Zhang, X. Jiang, G. Cao, X. Zhang, T.R. Croley, X. Wu, J.-J. Yin, Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants. J. Environ. Sci. Health C 36, 84–97 (2018)

    Article  Google Scholar 

  154. S.A. Rakhman, T. Utaipan, C. Pakhathirathien, W. Khummueng, Metal and metal oxide nanoparticles from Mimusops elengi Linn. extract: green synthesis, antioxidant activity, and cytotoxicity. Sains Malays 51, 2857–2871 (2022)

    Article  CAS  Google Scholar 

  155. X. Ge, Z. Cao, L. Chu, The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants 11, 791 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. J.P. Saikia, S. Paul, B.K. Konwar, S.K. Samdarshi, Nickel oxide nanoparticles: a novel antioxidant. Colloids Surf. B 78, 146–148 (2010)

    Article  CAS  Google Scholar 

  157. A.K. Keshari, R. Srivastava, P. Singh, V.B. Yadav, G. Nath, Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 11, 37–44 (2020)

    Article  PubMed  Google Scholar 

  158. B.C. Nelson, M.E. Johnson, M.L. Walker, K.R. Riley, C.M. Sims, Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 5, 15 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  159. S. Ren, Y. Zhou, K. Zheng, X. Xu, J. Yang, X. Wang, L. Miao, H. Wei, Y. Xu, Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioactive Mater. 7, 242–253 (2022)

    Article  CAS  Google Scholar 

  160. J. Jiang, J. Pi, J. Cai, The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 1062562 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  161. T.A. Singh, A. Sharma, N. Tejwan, N. Ghosh, J. Das, P.C. Sil, A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Coll. Interface. Sci. 295, 102495 (2021)

    Article  CAS  Google Scholar 

  162. P. Nagajyothi, T. Sreekanth, C.O. Tettey, Y.I. Jun, S.H. Mook, Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg. Med. Chem. Lett. 24, 4298–4303 (2014)

    Article  CAS  PubMed  Google Scholar 

  163. S. Agrawal, R. Srivastava, Osteoinductive and osteoconductive biomaterials, in Racing for the Surface: Antimicrobial and Interface Tissue Engineering. (Springer, 2020), pp.355–395

    Chapter  Google Scholar 

  164. T. Nakashima, T. Morimoto, A. Hashimoto, S. Kii, M. Tsukamoto, H. Miyamoto, M. Todo, M. Sonohata, M. Mawatari, Osteoconductivity and neurotoxicity of silver-containing hydroxyapatite coating cage for spinal interbody fusion in rats. JOR spine 6, e1236 (2023)

    Article  CAS  PubMed  Google Scholar 

  165. Y. Liu, Z. Zheng, J.N. Zara, C. Hsu, D.E. Soofer, K.S. Lee, R.K. Siu, L.S. Miller, X. Zhang, D. Carpenter, The antimicrobial and osteoinductive properties of silver nanoparticle/poly(dl-lactic-co-glycolic acid)-coated stainless steel. Biomaterials 33, 8745–8756 (2012)

    Article  CAS  PubMed  Google Scholar 

  166. D.N. Heo, W.-K. Ko, H.R. Lee, S.J. Lee, D. Lee, S.H. Um, J.H. Lee, Y.-H. Woo, L.G. Zhang, D.-W. Lee, Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J. Colloid Interface Sci. 469, 129–137 (2016)

    Article  CAS  PubMed  Google Scholar 

  167. K. Jadhav, H. Rajeshwari, S. Deshpande, S. Jagwani, D. Dhamecha, S. Jalalpure, K. Subburayan, D. Baheti, Phytosynthesis of gold nanoparticles: characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry. Mater. Sci. Eng. C 93, 664–670 (2018)

    Article  CAS  Google Scholar 

  168. D. Lee, D.N. Heo, S.J. Lee, M. Heo, J. Kim, S. Choi, H.-K. Park, Y.G. Park, H.-N. Lim, I.K. Kwon, Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis. Appl. Surf. Sci. 432, 300–307 (2018)

    Article  CAS  Google Scholar 

  169. S. Norozi, M. Ghollasi, A. Salimi, R. Halabian, M. Shahrousvad, Mesenchymal stem cells osteogenic differentiation by ZnO nanoparticles and polyurethane bimodal foam nanocomposites, in Cell and Tissue Banking. (Springer, 2023), pp.1–19

    Google Scholar 

  170. W. de Souza, S. Gemini-Piperni, L. Grenho, L.A. Rocha, J.M. Granjeiro, S.A. Melo, M.H. Fernandes, A.R. Ribeiro, Titanium dioxide nanoparticles affect osteoblast-derived exosome cargos and impair osteogenic differentiation of human mesenchymal stem cells. Biomater. Sci. 11, 2427–2444 (2023)

    Article  PubMed  Google Scholar 

  171. A.-R. Masoud, F. Alakija, M.J. Perves Bappy, P.A. Mills, D.K. Mills, Metallizing the surface of halloysite nanotubes—a review. Coatings 13, 542 (2023)

    Article  CAS  Google Scholar 

  172. S. Same, S.A. Nakhjavani, G. Samee, G. Navidi, S. Davaran, Halloysite clay nanotube in regenerative medicine for tissue and wound healing. Ceram. Int. 48, 31065–31079 (2022)

    Article  CAS  Google Scholar 

  173. S. Karnik, K. Hines, D.K. Mills, Nanoenhanced hydrogel system with sustained release capabilities. J. Biomed. Mater. Res. Part A 103, 2416–2426 (2015)

    Article  CAS  Google Scholar 

  174. S.B. Abdulahy, M. Esmaeili Bidhendi, M.R. Vaezi, M. Moosazadeh Moghaddam, Osteogenesis improvement of gelatin-based nanocomposite scaffold by loading zoledronic acid. Front. Bioeng. Biotechnol. 10, 890583 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  175. E. Naumenko, I. Guryanov, E. Zakirova, R. Fakhrullin, Forskolin-loaded halloysite nanotubes as osteoconductive additive for the biopolymer tissue engineering scaffolds. Polymers 13, 3949 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. S. Karnik, U.M. Jammalamadaka, K.K. Tappa, R. Giorno, D.K. Mills, Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications. Heliyon 2, e00072 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  177. K. Huang, Q. Ou, Y. Xie, X. Chen, Y. Fang, C. Huang, Y. Wang, Z. Gu, J. Wu, Halloysite nanotube based scaffold for enhanced bone regeneration. ACS Biomater. Sci. Eng. 5, 4037–4047 (2019)

    Article  CAS  PubMed  Google Scholar 

  178. F. Kazemi-Aghdam, V. Jahed, M. Dehghan-Niri, F. Ganji, E. Vasheghani-Farahani, Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering. Carbohyd. Polym. 269, 118311 (2021)

    Article  CAS  Google Scholar 

  179. Q. Ou, K. Huang, C. Fu, C. Huang, Y. Fang, Z. Gu, J. Wu, Y. Wang, Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration. Chem. Eng. J. 382, 123019 (2020)

    Article  CAS  Google Scholar 

  180. A. Elumalai, D.K. Mills, An eco-friendly, simple, and inexpensive method for metal-coating strontium onto halloysite nanotubes. J. Composites Sci. 6, 276 (2022)

    Article  CAS  Google Scholar 

  181. Y. Luo, A. Humayun, D. Mills, Zinc doped halloysite cooperating with polylactic acid for bone regeneration (2020)

  182. A. Humayun, Y. Luo, A. Elumalai, D.K. Mills, Differential antimicrobial and cellular response of electrolytically metalized halloysite nanotubes having different amounts of surface metallization. Mater. Adv. 1, 1705–1715 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. P. Liu, M. Zhao, Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Appl. Surf. Sci. 255, 3989–3993 (2009)

    Article  CAS  Google Scholar 

  184. Y. Zhang, X. He, J. Ouyang, H. Yang, Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property. Sci. Rep. 3, 2948 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  185. E. Abdullayev, K. Sakakibara, K. Okamoto, W. Wei, K. Ariga, Y. Lvov, Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl. Mater. Interfaces. 3, 4040–4046 (2011)

    Article  CAS  PubMed  Google Scholar 

  186. S. Chen, J. Li, Y. Zhang, D. Zhang, J. Zhu, Effect of preparation method on halloysite supported cobalt catalysts for Fischer-Tropsch synthesis. J. Nat. Gas Chem. 21, 426–430 (2012)

    Article  CAS  Google Scholar 

  187. A. Humayun, D. Mills, Voltage regulated electrophoretic deposition of silver nanoparticles on halloysite nanotubes. Results Mater. 7, 100112 (2020)

    Article  Google Scholar 

  188. Y. Luo, A. Humayun, D.K. Mills, Surface modification of 3D printed PLA/halloysite composite scaffolds with antibacterial and osteogenic capabilities. Appl. Sci. 10, 3971 (2020)

    Article  CAS  Google Scholar 

  189. A.W. McFarland Jr., A. Elumalai, C.C. Miller, A. Humayun, D.K. Mills, Effectiveness and applications of a metal-coated HNT/polylactic acid antimicrobial filtration system. Polymers 14, 1603 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. A. Humayun, Y. Luo, D.K. Mills, Electrophoretic deposition of gentamicin-loaded ZnHNTs-chitosan on titanium. Coatings 10, 944 (2020)

    Article  CAS  Google Scholar 

  191. M.J.P. Bappy, G.S. Polo, A. Monistere, D.K. Mills, Electrospinning of silver and zinc-coated halloysite nanotube polylactic acid scaffolds, in Biomedical Materials & Devices. (Springer, 2023), pp.1–11

    Google Scholar 

  192. Y.-W. Huang, M. Cambre, H.-J. Lee, The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci. 18, 2702 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  193. F.C. Simeone, A.L. Costa, Assessment of cytotoxicity of metal oxide nanoparticles on the basis of fundamental physical–chemical parameters: a robust approach to grouping. Environ. Sci. Nano 6, 3102–3112 (2019)

    Article  CAS  Google Scholar 

  194. S. Attarilar, J. Yang, M. Ebrahimi, Q. Wang, J. Liu, Y. Tang, J. Yang, The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front. Bioeng. Biotechnol. 8, 822 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  195. A.B. Sengul, E. Asmatulu, Toxicity of metal and metal oxide nanoparticles: a review. Environ. Chem. Lett. 18, 1659–1683 (2020)

    Article  CAS  Google Scholar 

  196. S. Patil, R. Chandrasekaran, Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 18, 1–23 (2020)

    Article  Google Scholar 

  197. N. Desai, Challenges in development of nanoparticle-based therapeutics. AAPS J. 14, 282–295 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. E.J. Cho, H. Holback, K.C. Liu, S.A. Abouelmagd, J. Park, Y. Yeo, Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol. Pharm. 10, 2093–2110 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. E.M. Hotze, T. Phenrat, G.V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39, 1909–1924 (2010)

    Article  CAS  PubMed  Google Scholar 

  200. Y.N. Slavin, J. Asnis, U.O. Hńfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. nanobiotechnol. 15, 1–20 (2017)

    Article  Google Scholar 

  201. M.A. Maurer-Jones, I.L. Gunsolus, C.J. Murphy, C.L. Haynes, Toxicity of engineered nanoparticles in the environment. Anal. Chem. 85, 3036–3049 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. A.G. Howard, On the challenge of quantifying man-made nanoparticles in the aquatic environment. J. Environ. Monit. 12, 135–142 (2010)

    Article  CAS  PubMed  Google Scholar 

  203. S.H. Gebre, Bio-inspired synthesis of metal and metal oxide nanoparticles: the key role of phytochemicals. J. Cluster Sci. 34, 665–704 (2023)

    Article  CAS  Google Scholar 

  204. L. Soltys, O. Olkhovyy, T. Tatarchuk, M. Naushad, Green synthesis of metal and metal oxide nanoparticles: principles of green chemistry and raw materials. Magnetochemistry 7, 145 (2021)

    Article  CAS  Google Scholar 

  205. N.M. Ishak, S. Kamarudin, S. Timmiati, Green synthesis of metal and metal oxide nanoparticles via plant extracts: an overview. Mater. Res. Express 6, 112004 (2019)

    Article  CAS  Google Scholar 

  206. A.M.E. Shafey, Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Process. Synth. 9, 304–339 (2020)

    Article  Google Scholar 

  207. J. Jeevanandam, S.F. Kiew, S. Boakye-Ansah, S.Y. Lau, A. Barhoum, M.K. Danquah, J. Rodrigues, Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 14, 2534–2571 (2022)

    Article  CAS  PubMed  Google Scholar 

  208. S. Jadoun, R. Arif, N.K. Jangid, R.K. Meena, Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett. 19, 355–374 (2021)

    Article  CAS  Google Scholar 

  209. S. Jadoun, N.P.S. Chauhan, P. Zarrintaj, M. Barani, R.S. Varma, S. Chinnam, A. Rahdar, Synthesis of nanoparticles using microorganisms and their applications: a review. Environ. Chem. Lett. 20, 3153–3197 (2022)

    Article  CAS  Google Scholar 

  210. K.I. Alsamhary, Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci. 27, 2185–2191 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. M. Gholipourmalekabadi, M. Mobaraki, M. Ghaffari, A. Zarebkohan, V.F. Omrani, A.M. Urbanska, A. Seifalian, Targeted drug delivery based on gold nanoparticle derivatives. Curr. Pharm. Des. 23, 2918–2929 (2017)

    Article  CAS  PubMed  Google Scholar 

  212. P. Prema, T. Boobalan, A. Arun, K. Rameshkumar, R.S. Babu, V. Veeramanikandan, V.-H. Nguyen, P. Balaji, Green tea extract mediated biogenic synthesis of gold nanoparticles with potent anti-proliferative effect against PC-3 human prostate cancer cells. Mater. Lett. 306, 130882 (2022)

    Article  CAS  Google Scholar 

  213. P. Plachtová, Z. Medrikova, R. Zboril, J. Tucek, R.S. Varma, B. Maršálek, Iron and iron oxide nanoparticles synthesized with green tea extract: differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustain. Chem. Eng. 6, 8679–8687 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  214. K. Richter, P.S. Campbell, T. Baecker, A. Schimitzek, D. Yaprak, A.V. Mudring, Ionic liquids for the synthesis of metal nanoparticles. Physica Status Solidi b 250, 1152–1164 (2013)

    Article  CAS  Google Scholar 

  215. L.-L. Li, W.-M. Zhang, Q. Yuan, Z.-X. Li, C.-J. Fang, L.-D. Sun, L.-J. Wan, C.-H. Yan, Room temperature ionic liquids assisted green synthesis of nanocrystalline porous SnO2 and their gas sensor behaviors. Cryst. Growth Des. 8, 4165–4172 (2008)

    Article  CAS  Google Scholar 

  216. Y.S. Park, C. Ha, S.W. Kang, Highly permeable ionic liquid 1-butyl-3-methylimidazoliumtetrafluoroborate (BMIMBF 4)/CuO composite membrane for CO2 separation. RSC Adv. 7, 33568–33571 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This manuscript was funded by a NASA EPSCoR Rapid Response Research (R3) program award 22-2022 R30015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Mills.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shineh, G., Mobaraki, M., Afzali, E. et al. Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair. Biomedical Materials & Devices 2, 918–941 (2024). https://doi.org/10.1007/s44174-024-00159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-024-00159-3

Keywords

Navigation