Skip to main content

Advertisement

Log in

Wireless Wearable Devices and Recent Applications in Health Monitoring and Clinical Diagnosis

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Human body contains much health information, which can reflect the basic health status and help detect diseases. However, the traditional wired transmission method greatly limits the portability and immediacy of the device. Turning the device into wireless can effectively solve the above problems. The development and research of new wireless wearable devices is urgent. This review focuses on wireless wearable devices applied in health monitoring and clinical diagnosis. Firstly, we introduce its development status and give emergent device system architecture. Then, wireless energy transmission and wireless data transmission modules are presented. Besides, this review categorizes the health information contained in the human body into three categories based on its signal states, and introduces measurement methods and existing applications. Finally, the outlook on the current challenges of wireless wearable devices is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Manuscript has no associated data.

References

  1. M.V. Perez, Getting smart about wearable ECG interpretation in the clinic. Clin. Electrophysiol. 8, 792–794 (2022). https://doi.org/10.1016/j.jacep.2022.03.018

    Article  Google Scholar 

  2. J.C. Williams, P.J. Campagnola, Wearable second harmonic generation imaging: the sarcomeric bridge to the clinic. Neuron 88, 1067–1069 (2015). https://doi.org/10.1016/j.neuron.2015.12.009

    Article  CAS  Google Scholar 

  3. Q.H. Abbasi, H. Heidari, A. Alomainy, Wearable wireless devices. Appl. Sci. 9, 2643 (2019). https://doi.org/10.3390/app9132643

    Article  Google Scholar 

  4. Y.-G. Park, S. Lee, J.-U. Park, Recent progress in wireless sensors for wearable electronics. Sensors 19, 4353 (2019). https://doi.org/10.3390/s19204353

    Article  Google Scholar 

  5. Y. Li, M. Zhao, Q. Wei, J. Yu, J. Chen, D. Chen, J. Wang, Wireless passive intracranial pressure sensor based on vacuum packaging. IEEE Sensors J. 20, 11247–11255 (2020). https://doi.org/10.1109/JSEN.2020.2998786

    Article  CAS  Google Scholar 

  6. K. Kim, S.-W. Jung, Interactive image segmentation using semi-transparent wearable glasses. IEEE Trans. Multimed. 20, 208–223 (2018). https://doi.org/10.1109/TMM.2017.2728318

    Article  Google Scholar 

  7. B. Ciui, A. Martin, R.K. Mishra, B. Brunetti, T. Nakagawa, T.J. Dawkins, M. Lyu, C. Cristea, R. Sandulescu, J. Wang, Wearable wireless tyrosinase bandage and microneedle sensors: toward melanoma screening. Adv. Healthc. Mater. 7, 1701264 (2018). https://doi.org/10.1002/adhm.201701264

    Article  CAS  Google Scholar 

  8. L. Manjakkal, A. Pullanchiyodan, N. Yogeswaran, E.S. Hosseini, R. Dahiya, A wearable supercapacitor based on conductive PEDOT: PSS-coated cloth and a sweat electrolyte. Adv. Mater. 32, 1907254 (2020). https://doi.org/10.1002/adma.201907254

    Article  CAS  Google Scholar 

  9. H.E. Lee, D. Lee, T.-I. Lee, J.H. Shin, G.-M. Choi, C. Kim, S.H. Lee, J.H. Lee, Y.H. Kim, S.-M. Kang et al., Wireless powered wearable micro light-emitting diodes. Nano Energy 55, 454–462 (2019). https://doi.org/10.1016/j.nanoen.2018.11.017

    Article  CAS  Google Scholar 

  10. X. Chen, L. Gong, L. Wei, S.-C. Yeh, L. Da Xu, L. Zheng, Z. Zou, A wearable hand rehabilitation system with soft gloves. IEEE Trans. Ind. Inf. 17, 943–952 (2021). https://doi.org/10.1109/TII.2020.3010369

    Article  Google Scholar 

  11. Z. Li, Y. Ma, K. Zhang, J. Wan, D. Zhao, Y. Pi, G. Chen, J. Zhang, W. Tang, L. Lin et al., Air permeable vibrotactile actuators for wearable wireless haptics. Adv. Funct. Mater. 33, 2211146 (2023). https://doi.org/10.1002/adfm.202211146

    Article  CAS  Google Scholar 

  12. R.K. Mishra, A. Barfidokht, A. Karajic, J.R. Sempionatto, J. Wang, J. Wang, Wearable potentiometric tattoo biosensor for on-body detection of G-type nerve agents simulants. Sens. Actuators B 273, 966–972 (2018). https://doi.org/10.1016/j.snb.2018.07.001

    Article  CAS  Google Scholar 

  13. T. An, D.V. Anaya, S. Gong, L.W. Yap, F. Lin, R. Wang, M.R. Yuce, W. Cheng, Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface. Nano Energy 77, 105295 (2020). https://doi.org/10.1016/j.nanoen.2020.105295

    Article  CAS  Google Scholar 

  14. V. Kedambaimoole, N. Kumar, V. Shirhatti, S. Nuthalapati, S. Kumar, M.M. Nayak, P. Sen, D. Akinwande, K. Rajanna, Reduced graphene oxide tattoo as wearable proximity sensor. Adv. Electron. Mater. 7, 2001214 (2021). https://doi.org/10.1002/aelm.202001214

    Article  CAS  Google Scholar 

  15. B. Gao, A. Elbaz, Z. He, Z. Xie, H. Xu, S. Liu, E. Su, H. Liu, Z. Gu, Bioinspired kirigami fish-based highly stretched wearable biosensor for human biochemical-physiological hybrid monitoring. Adv. Mater. Technol. 3, 1700308 (2018). https://doi.org/10.1002/admt.201700308

    Article  CAS  Google Scholar 

  16. T.R. Ray, M. Ivanovic, P.M. Curtis, D. Franklin, K. Guventurk, W.J. Jeang, J. Chafetz, H. Gaertner, G. Young, S. Rebollo et al., Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci. Transl. Med. (2021). https://doi.org/10.1126/scitranslmed.abd8109

    Article  Google Scholar 

  17. P. Porter, F. Muirhead, J. Brisbane, B. Schneider, J. Choveaux, N. Bear, J. Carson, K. Jones, D. Silva, C. Neppe, Accuracy, clinical utility, and usability of a wireless self-guided fetal heart rate monitor. Obstet. Gynecol. 137, 673–681 (2021). https://doi.org/10.1097/AOG.0000000000004322

    Article  CAS  Google Scholar 

  18. G.S. Cañón Bermúdez, D. Makarov, Magnetosensitive E-skins for interactive devices. Adv. Funct. Mater. 31, 2007788 (2021). https://doi.org/10.1002/adfm.202007788

    Article  CAS  Google Scholar 

  19. W. Yan, C. Ma, X. Cai, Y. Sun, G. Zhang, W. Song, Self-powered and wireless physiological monitoring system with integrated power supply and sensors. Nano Energy 108, 108203 (2023). https://doi.org/10.1016/j.nanoen.2023.108203

    Article  CAS  Google Scholar 

  20. K. Xie, B. Wei, Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 26, 3592–3617 (2014). https://doi.org/10.1002/adma.201305919

    Article  CAS  Google Scholar 

  21. C. Wu, L. Han, Y. Dong, M. Guo, R. Wang, J. Si, Wireless battery-free flexible sensing system for continuous wearable health monitoring. Adv. Mater. Technol. 8, 2201662 (2023). https://doi.org/10.1002/admt.202201662

    Article  CAS  Google Scholar 

  22. T. Sakata, M. Hagio, A. Saito, Y. Mori, M. Nakao, K. Nishi, Biocompatible and flexible paper-based metal electrode for potentiometric wearable wireless biosensing. Sci. Technol. Adv. Mater. 21, 379–387 (2020). https://doi.org/10.1080/14686996.2020.1777463

    Article  CAS  Google Scholar 

  23. K. Lee, S.H. Chae, Power transfer efficiency analysis of intermediate-resonator for wireless power transfer. IEEE Trans. Power Electron. 33, 2484–2493 (2018). https://doi.org/10.1109/TPEL.2017.2698638

    Article  Google Scholar 

  24. S.H. Gupta, A. Sharma, M. Mohta, A. Rajawat, Hand movement classification from measured scattering parameters using deep convolutional neural network. Measurement 151, 107258 (2020). https://doi.org/10.1016/j.measurement.2019.107258

    Article  Google Scholar 

  25. M.F. Mahmood, S.L. Mohammed, S.K. Gharghan, A. Al-Naji, J. Chahl, Hybrid coils-based wireless power transfer for intelligent sensors. Sensors 20, 2549 (2020). https://doi.org/10.3390/s20092549

    Article  Google Scholar 

  26. W.-Y. Lai, T.-R. Hsiang, Wireless charging deployment in sensor networks. Sensors 19, 201 (2019). https://doi.org/10.3390/s19010201

    Article  Google Scholar 

  27. Z.J. Lee, G. Lee, T. Lee, C. Jin, R. Lee, Z. Low, D. Chang, C. Ortega, S.H. Low, Adaptive charging networks: a framework for smart electric vehicle charging. IEEE Trans. Smart Grid 12, 4339–4350 (2021). https://doi.org/10.1109/TSG.2021.3074437

    Article  Google Scholar 

  28. Z. Zhang, B. Zhang, Angular-misalignment insensitive omnidirectional wireless power transfer. IEEE Trans. Ind. Electron. 67, 2755–2764 (2020). https://doi.org/10.1109/TIE.2019.2908604

    Article  Google Scholar 

  29. J. Feng, Q. Li, F.C. Lee, M. Fu, Transmitter coils design for free-positioning omnidirectional wireless power transfer system. IEEE Trans. Ind. Inf. 15, 4656–4664 (2019). https://doi.org/10.1109/TII.2019.2908217

    Article  Google Scholar 

  30. Z. Ye, Y. Sun, X. Liu, P. Wang, C. Tang, H. Tian, Power transfer efficiency analysis for omnidirectional wireless power transfer system using three-phase-shifted drive. Energies 11, 2159 (2018). https://doi.org/10.3390/en11082159

    Article  Google Scholar 

  31. W.M. Ng, C. Zhang, D. Lin, S.Y. Ron Hui, Two- and three-dimensional omnidirectional wireless power transfer. IEEE Trans. Power Electron. 29, 4470–4474 (2014). https://doi.org/10.1109/TPEL.2014.2300866

    Article  Google Scholar 

  32. Y. Zhang, Z. Zhou, Z. Fan, S. Zhang, F. Zheng, K. Liu, Y. Zhang, Z. Shi, L. Chen, X. Li et al., Self-powered multifunctional transient bioelectronics. Small 14, 1802050 (2018). https://doi.org/10.1002/smll.201802050

    Article  CAS  Google Scholar 

  33. W. Li, K. Lin, L. Chen, D. Yang, Q. Ge, Z. Wang, Self-powered wireless flexible ionogel wearable devices. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.2c19744

    Article  Google Scholar 

  34. T. Starner, Human-powered wearable computing. IBM Syst. J. 35, 618–629 (1996). https://doi.org/10.1147/sj.353.0618

    Article  Google Scholar 

  35. M. Lee, C.-Y. Chen, S. Wang, S.N. Cha, Y.J. Park, J.M. Kim, L.-J. Chou, Z.L. Wang, A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 24, 1759–1764 (2012). https://doi.org/10.1002/adma.201200150

    Article  CAS  Google Scholar 

  36. Z. Lou, L. Li, L. Wang, G. Shen, Recent progress of self-powered sensing systems for wearable electronics. Small 13, 1701791 (2017). https://doi.org/10.1002/smll.201701791

    Article  CAS  Google Scholar 

  37. J. Shao, T. Jiang, Z. Wang, Theoretical foundations of triboelectric nanogenerators (TENGs). Sci. China Technol. Sci. 63, 1087–1109 (2020). https://doi.org/10.1007/s11431-020-1604-9

    Article  Google Scholar 

  38. L. Wang, Z. Fei, Z. Wu, Y. Ye, Y. Qi, J. Wang, L. Zhao, C. Zhang, Y. Zhang, G. Qin et al., Wearable bending wireless sensing with autonomous wake-up by piezoelectric and triboelectric hybrid nanogenerator. Nano Energy 112, 108504 (2023). https://doi.org/10.1016/j.nanoen.2023.108504

    Article  CAS  Google Scholar 

  39. S.S. Kwak, H.-J. Yoon, S.-W. Kim, Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 29, 1804533 (2019). https://doi.org/10.1002/adfm.201804533

    Article  CAS  Google Scholar 

  40. Y. Wu, Y. Luo, J. Qu, W.A. Daoud, T. Qi, Nanogap and environmentally stable triboelectric nanogenerators based on surface self-modified sustainable films. ACS Appl. Mater. Interfaces 12, 55444–55452 (2020). https://doi.org/10.1021/acsami.0c16671

    Article  CAS  Google Scholar 

  41. G.Q. Gu, C.B. Han, J.J. Tian, C.X. Lu, C. He, T. Jiang, Z. Li, Z.L. Wang, Antibacterial composite film-based triboelectric nanogenerator for harvesting walking energy. ACS Appl. Mater. Interfaces 9, 11882–11888 (2017). https://doi.org/10.1021/acsami.7b00230

    Article  CAS  Google Scholar 

  42. H. Wu, Y. Huang, F. Xu, Y. Duan, Z. Yin, Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv. Mater. 28, 9881–9919 (2016). https://doi.org/10.1002/adma.201602251

    Article  CAS  Google Scholar 

  43. F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28, 4283–4305 (2016). https://doi.org/10.1002/adma.201504299

    Article  CAS  Google Scholar 

  44. K. Chang, M. Guo, L. Pu, J. Dong, L. Li, P. Ma, Y. Huang, T. Liu, Wearable nanofibrous tactile sensors with fast response and wireless communication. Chem. Eng. J. 451, 138578 (2023). https://doi.org/10.1016/j.cej.2022.138578

    Article  CAS  Google Scholar 

  45. Z. He, Y. Wang, H. Xiao, Y. Wu, X. Xia, S. Li, J. Liu, K. Huang, F. Wang, J. Shang et al., Highly stretchable, deformation-stable wireless powering antenna for wearable electronics. Nano Energy 112, 108461 (2023). https://doi.org/10.1016/j.nanoen.2023.108461

    Article  CAS  Google Scholar 

  46. H. Park, K. Kim, S.-J. Kweon, O. Gul, J. Choi, Y.S. Oh, I. Park, M. Je, A wireless and wearable body-pressure-monitoring system for the prevention of pressure-induced skin injuries. IEEE Trans. Biomed. Circuits Syst. (2023). https://doi.org/10.1109/TBCAS.2023.3288126

    Article  Google Scholar 

  47. Y. Lan, Y. Yang, Y. Wang, Y. Wu, Z. Cao, S. Huo, L. Jiang, Y. Guo, Y. Wu, B. Yan et al., High-temperature-annealed flexible carbon nanotube network transistors for high-frequency wearable wireless electronics. ACS Appl. Mater. Interfaces 12, 26145–26152 (2020). https://doi.org/10.1021/acsami.0c03810

    Article  CAS  Google Scholar 

  48. S. Mohammadi, K. Ismail, A.H. Ghods, Investigating Wi-Fi, bluetooth, and bluetooth low-energy signal characteristics for integration in vehicle-pedestrian collision warning systems. Sustainability 13, 10823 (2021). https://doi.org/10.3390/su131910823

    Article  Google Scholar 

  49. B.W. An, J.H. Shin, S.-Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.-G. Park, E. Cho et al., Smart sensor systems for wearable electronic devices. Polymers 9, 303 (2017). https://doi.org/10.3390/polym9080303

    Article  CAS  Google Scholar 

  50. Q. Chen, L. Tang, A wearable blood oxygen saturation monitoring system based on bluetooth low energy technology. Comput. Commun. 160, 101–110 (2020). https://doi.org/10.1016/j.comcom.2020.05.041

    Article  Google Scholar 

  51. J. Jung, S. Shin, M. Kang, K.H. Kang, Y.T. Kim, Development of wearable wireless electrocardiogram detection system using bluetooth low energy. Electronics 10, 608 (2021). https://doi.org/10.3390/electronics10050608

    Article  Google Scholar 

  52. W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). https://doi.org/10.1038/nature16521

    Article  CAS  Google Scholar 

  53. Z. Sonner, E. Wilder, J. Heikenfeld, G. Kasting, F. Beyette, D. Swaile, F. Sherman, J. Joyce, J. Hagen, N. Kelley-Loughnane et al., The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9, 031301 (2015). https://doi.org/10.1063/1.4921039

    Article  CAS  Google Scholar 

  54. S.-J. Choi, S.-J. Kim, I.-D. Kim, Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Mater. 8, e315–e315 (2016). https://doi.org/10.1038/am.2016.150

    Article  CAS  Google Scholar 

  55. C. Liu, Y. Zhang, H. Zhou, A comprehensive study of bluetooth low energy. J. Phys. (2021). https://doi.org/10.1088/1742-6596/2093/1/012021

    Article  Google Scholar 

  56. A. Kiourti, RFID antennas for body-area applications: from wearables to implants. IEEE Antennas Propag. Mag. 60, 14–25 (2018). https://doi.org/10.1109/MAP.2018.2859167

    Article  Google Scholar 

  57. G. Valentine, L. Vojtech, M. Neruda, Design of solar harvested semi active RFID transponder with supercapacitor storage. AEEE 13, 344–349 (2015). https://doi.org/10.15598/aeee.v13i4.1485

    Article  Google Scholar 

  58. H. Shan, J. Peterson Iii, S. Hathorn, S. Mohammadi, The RFID connection: RFID technology for sensing and the internet of things. IEEE Microw. 19, 63–79 (2018). https://doi.org/10.1109/MMM.2018.2863439

    Article  Google Scholar 

  59. J. Zhang, G. Tian, A. Marindra, A. Sunny, A. Zhao, A review of passive RFID tag antenna-based sensors and systems for structural health monitoring applications. Sensors 17, 265 (2017). https://doi.org/10.3390/s17020265

    Article  Google Scholar 

  60. B. Aslam, U.H. Khan, M.A. Azam, Y. Amin, J. Loo, H.A. Tenhunen, A compact implantable RFID tag antenna dedicated to wireless health care. Int J. Microw. Comput. Aided Eng. 27(5), e21094 (2017). https://doi.org/10.1002/mmce.21094

    Article  Google Scholar 

  61. Y. Zhang, S. Chen, Y. Zhou, Y. Fang, C. Qian, Monitoring bodily oscillation with RFID tags. IEEE Internet Things J. 6, 3840–3854 (2019). https://doi.org/10.1109/JIOT.2019.2892000

    Article  CAS  Google Scholar 

  62. H. Abdelnasser, K.A. Harras, M. Youssef, UbiBreathe: a ubiquitous non-invasive WiFi-based breathing estimator, in Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing (2015)

  63. N. Patwari, L. Brewer, Q. Tate, O. Kaltiokallio, M. Bocca, Breathfinding: a wireless network that monitors and locates breathing in a home. IEEE J. Sel. Top. Signal Process. 8, 30–42 (2014). https://doi.org/10.1109/JSTSP.2013.2287473

    Article  Google Scholar 

  64. A. Scidà, S. Haque, E. Treossi, A. Robinson, S. Smerzi, S. Ravesi, S. Borini, V. Palermo, Application of graphene-based flexible antennas in consumer electronic devices. Mater. Today 21, 223–230 (2018). https://doi.org/10.1016/j.mattod.2018.01.007

    Article  CAS  Google Scholar 

  65. N.K. Singh, Near-field communication (NFC). ITAL (2020). https://doi.org/10.6017/ital.v39i2.11811

    Article  Google Scholar 

  66. E. Sutjiredjeki, N.C. Basjaruddin, D.N. Fajrin, F. Noor, Development of NFC and IoT-enabled measurement devices for improving health care delivery of indonesian children. J. Phys. 1450, 012072 (2020). https://doi.org/10.1088/1742-6596/1450/1/012072

    Article  Google Scholar 

  67. R. Lin, H.-J. Kim, S. Achavananthadith, Z. Xiong, J.K.W. Lee, Y.L. Kong, J.S. Ho, Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 13, 2190 (2022). https://doi.org/10.1038/s41467-022-29859-4

    Article  CAS  Google Scholar 

  68. M. Catrysse, R. Puers, C. Hertleer, L. Van Langenhove, H. Van Egmond, D. Matthys, Towards the integration of textile sensors in a wireless monitoring suit. Sens. Actuators A 114, 302–311 (2004). https://doi.org/10.1016/j.sna.2003.10.071

    Article  CAS  Google Scholar 

  69. L. Xu, X. Chen, S. Tan, Z. Hu, B. Ying, T.T. Ye, Y. Li, Characterization and modeling of embroidered NFC coil antennas for wearable applications. IEEE Sens. J. 20, 14501–14513 (2020). https://doi.org/10.1109/JSEN.2020.3008594

    Article  CAS  Google Scholar 

  70. L. Xu, Z. Liu, X. Chen, R. Sun, Z. Hu, Z. Zheng, T.T. Ye, Y. Li, Deformation-resilient embroidered near field communication antenna and energy harvesters for wearable applications. Adv. Intell. Syst. 1, 1900056 (2019). https://doi.org/10.1002/aisy.201900056

    Article  Google Scholar 

  71. W. Lee, S.Y. Baek, S.H. Kim, Deep-learning-aided RF fingerprinting for NFC security. IEEE Commun. Mag. 59, 96–101 (2021). https://doi.org/10.1109/MCOM.001.2000912

    Article  Google Scholar 

  72. Z.G. Prodanoff, E.L. Jones, H. Chi, S. Elfayoumy, C. Cummings, Survey of security challenges in NFC and RFID for E-health applications. Int. J. E-Health Med. Commun. 7, 1–13 (2016). https://doi.org/10.4018/IJEHMC.2016040101

    Article  Google Scholar 

  73. V. Karthik, T.R. Rao, SAR investigations on the exposure compliance of wearable wireless devices using infrared thermography. Bioelectromagnetics 39, 451–459 (2018). https://doi.org/10.1002/bem.22133

    Article  Google Scholar 

  74. K. Guido, A. Kiourti, Wireless wearables and implants: a dosimetry review. Bioelectromagnetics 41, 3–20 (2020). https://doi.org/10.1002/bem.22240

    Article  Google Scholar 

  75. J.R. Corea, A.M. Flynn, B. Lechêne, G. Scott, G.D. Reed, P.J. Shin, M. Lustig, A.C. Arias, Screen-printed flexible MRI receive coils. Nat. Commun. 7, 10839 (2016). https://doi.org/10.1038/ncomms10839

    Article  CAS  Google Scholar 

  76. D. Darnell, T. Truong, A.W. Song, Recent advances in radio-frequency coil technologies: flexible, wireless, and integrated coil arrays. Magn. Reson. Imaging 55, 1026–1042 (2022). https://doi.org/10.1002/jmri.27865

    Article  Google Scholar 

  77. M.A. Zahed, D.K. Kim, S.H. Jeong, M. Selim Reza, M. Sharifuzzaman, G.B. Pradhan, H. Song, M. Asaduzzaman, J.Y. Park, Microfluidic-integrated multimodal wearable hybrid patch for wireless and continuous physiological monitoring. ACS Sens. 8, 2960–2974 (2023). https://doi.org/10.1021/acssensors.3c00148

    Article  CAS  Google Scholar 

  78. A. Qayyum, I. Razzak, M. Tanveer, M. Mazher, B. Alhaqbani, High-density electroencephalography and speech signal based deep framework for clinical depression diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinf. 20, 2587–2597 (2023). https://doi.org/10.1109/TCBB.2023.3257175

    Article  Google Scholar 

  79. J. Martinot, V. Cuthbert, N.N. Le-Dong, N. Coumans, D. De Marneffe, C. Letesson, J.L. Pépin, D. Gozal, Clinical validation of a mandibular movement signal based system for the diagnosis of pediatric sleep apnea. Pediatr. Pulmonol. 57, 1904–1913 (2022). https://doi.org/10.1002/ppul.25320

    Article  Google Scholar 

  80. M. Zhao, Y. Yang, Z. Guo, C. Shao, H. Sun, Y. Zhang, Y. Sun, Y. Liu, Y. Song, L. Zhang et al., A comparative proteomics analysis of five body fluids: plasma, urine, cerebrospinal fluid, amniotic fluid, and saliva. Prot. Clin. Appl. 12, 1800008 (2018). https://doi.org/10.1002/prca.201800008

    Article  CAS  Google Scholar 

  81. B. Hu, X. Kang, S. Xu, J. Zhu, L. Yang, C. Jiang, Multiplex Chroma response wearable hydrogel patch: visual monitoring of urea in body fluids for health prognosis. Anal. Chem. 95, 3587–3595 (2023). https://doi.org/10.1021/acs.analchem.2c03806

    Article  CAS  Google Scholar 

  82. W. Ji, J. Zhu, W. Wu, N. Wang, J. Wang, J. Wu, Q. Wu, X. Wang, C. Yu, G. Wei et al., Wearable sweat biosensors refresh personalized health/medical diagnostics. Research (2021). https://doi.org/10.34133/2021/9757126

    Article  Google Scholar 

  83. J.M. Tiffany, Tears in health and disease. Eye 17, 923–926 (2003). https://doi.org/10.1038/sj.eye.6700566

    Article  CAS  Google Scholar 

  84. M. Echavarria, N.S. Reyes, P.E. Rodriguez, C. Ricarte, M. Ypas, A. Seoane, M. Querci, M. Brizio, M.E. Stryjewski, G. Carballal, Saliva screening of health care workers for SARS-CoV-2 detection. Rev. Argent. Microbiol. 54, 309–313 (2022). https://doi.org/10.1016/j.ram.2022.05.001

    Article  Google Scholar 

  85. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, T. Someya, Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016). https://doi.org/10.1126/sciadv.1501856

    Article  CAS  Google Scholar 

  86. J.E. Sinex, Pulse oximetry: principles and limitations. Am. J. Emerg. Med. 17, 59–66 (1999). https://doi.org/10.1016/S0735-6757(99)90019-0

    Article  CAS  Google Scholar 

  87. R.K. Pathinarupothi, P. Durga, E.S. Rangan, IoT-based smart edge for global health: remote monitoring with severity detection and alerts transmission. IEEE Internet Things J. 6, 2449–2462 (2019). https://doi.org/10.1109/JIOT.2018.2870068

    Article  Google Scholar 

  88. U. Gogate, J. Bakal, Healthcare monitoring system based on wireless sensor network for cardiac patients. Biomed. Pharmacol. J. 11, 1681–1688 (2018). https://doi.org/10.13005/bpj/1537

    Article  Google Scholar 

  89. M. Clarke, J. De Folter, V. Verma, H. Gokalp, Interoperable end-to-end remote patient monitoring platform based on IEEE 11073 PHD and ZigBee health care profile. IEEE Trans. Biomed. Eng. (2017). https://doi.org/10.1109/TBME.2017.2732501

    Article  Google Scholar 

  90. The International Consortium for Blood Pressure Genome-Wide Association Studies, Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011). https://doi.org/10.1038/nature10405.

  91. M. Wetterholm, S.E. Bonn, C. Alexandrou, M. Löf, Y. Trolle Lagerros, Validation of two automatic blood pressure monitors with the ability to transfer data via bluetooth. J. Med. Internet Res. 21, e12772 (2019). https://doi.org/10.2196/12772

    Article  Google Scholar 

  92. Y.-S. Yan, Y.-T. Zhang, An efficient motion-resistant method for wearable pulse oximeter. IEEE Trans. Inform. Technol. Biomed. 12, 399–405 (2008). https://doi.org/10.1109/TITB.2007.902173

    Article  Google Scholar 

  93. J. Kim, P. Gutruf, A.M. Chiarelli, S.Y. Heo, K. Cho, Z. Xie, A. Banks, S. Han, K. Jang, J.W. Lee et al., Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 27, 1604373 (2017). https://doi.org/10.1002/adfm.201604373

    Article  CAS  Google Scholar 

  94. A. Fanti, S. Casu, G. Mazzarella, A numerical estimation of a RFID reader field and SAR inside a blood bag at UHF. Electronics 5, 77 (2016). https://doi.org/10.3390/electronics5040077

    Article  Google Scholar 

  95. R. Davis, J. Gottschall, A. Gutierrez, C. Hohberger, D. Veeramani, J. Holcombe, Absence of acute adverse in-vitro effects on AS-1 RBCs and whole blood-derived platelets following prolonged exposure to 13.56 MHz radio energy: RF IMPACT ON RBCs and platelets. Transfusion 50, 1596–1603 (2010). https://doi.org/10.1111/j.1537-2995.2010.02733.x

    Article  Google Scholar 

  96. Y. Gai, E. Wang, M. Liu, L. Xie, Y. Bai, Y. Yang, J. Xue, X. Qu, Y. Xi, L. Li et al., A self-powered wearable sensor for continuous wireless sweat monitoring. Small Methods 6, 2200653 (2022). https://doi.org/10.1002/smtd.202200653

    Article  CAS  Google Scholar 

  97. Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang, H. Zhang, W. Gao, Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6, eaay9842 (2020). https://doi.org/10.1126/sciadv.aay9842

    Article  CAS  Google Scholar 

  98. D.P. Rose, M.E. Ratterman, D.K. Griffin, L. Hou, N. Kelley-Loughnane, R.R. Naik, J.A. Hagen, I. Papautsky, J.C. Heikenfeld, Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 62, 1457–1465 (2015). https://doi.org/10.1109/TBME.2014.2369991

    Article  Google Scholar 

  99. M.-C. Desax, R.A. Ammann, J. Hammer, M.H. Schoeni, J. Barben, On behalf of the Swiss Paediatric Respiratory Research Group Nanoduct® sweat testing for rapid diagnosis in newborns, infants and children with cystic fibrosis. Eur. J. Pediatr. 167, 299–304 (2008). https://doi.org/10.1007/s00431-007-0485-0

    Article  Google Scholar 

  100. M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors. Nat. Electron 1, 160–171 (2018). https://doi.org/10.1038/s41928-018-0043-y

    Article  Google Scholar 

  101. D.-H. Choi, A. Thaxton, I.C. Jeong, K. Kim, P.R. Sosnay, G.R. Cutting, P.C. Searson, Sweat test for cystic fibrosis: wearable sweat sensor vs. standard laboratory test. J. Cyst. Fibros. 17, e35–e38 (2018). https://doi.org/10.1016/j.jcf.2018.03.005

    Article  Google Scholar 

  102. W. Dang, L. Manjakkal, W.T. Navaraj, L. Lorenzelli, V. Vinciguerra, R. Dahiya, Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 107, 192–202 (2018). https://doi.org/10.1016/j.bios.2018.02.025

    Article  CAS  Google Scholar 

  103. G.M. Bianco, C. Occhiuzzi, N. Panunzio, G. Marrocco, A survey on radio frequency identification as a scalable technology to face pandemics. IEEE J. Radio Freq. Identif. 6, 77–96 (2022). https://doi.org/10.1109/JRFID.2021.3117764

    Article  Google Scholar 

  104. A.B. Barba, G.M. Bianco, L. Fiore, F. Arduini, G. Marrocco, C. Occhiuzzi, Design and manufacture of flexible epidermal NFC device for electrochemical sensing of sweat (2022).

  105. P. Escobedo, C.E. Ramos-Lorente, A. Martínez-Olmos, M.A. Carvajal, M. Ortega-Muñoz, I.D. Orbe-Payá, F. Hernández-Mateo, F. Santoyo-González, L.F. Capitán-Vallvey, A.J. Palma et al., Wireless wearable wristband for continuous sweat pH monitoring. Sens. Actuators B 327, 128948 (2021). https://doi.org/10.1016/j.snb.2020.128948

    Article  CAS  Google Scholar 

  106. Y. Jiang, K. Pan, T. Leng, Z. Hu, Smart textile integrated wireless powered near field communication body temperature and sweat sensing system. IEEE J. Electromagn. RF Microw. Med. Biol. 4, 164–170 (2020)

    Article  Google Scholar 

  107. J.D. Lane, D.M. Krumholz, R.A. Sack, C. Morris, Tear glucose dynamics in diabetes mellitus. Curr. Eye Res. 31, 895–901 (2006). https://doi.org/10.1080/02713680600976552

    Article  CAS  Google Scholar 

  108. H. Yao, Y. Liao, A.R. Lingley, A. Afanasiev, I. Lähdesmäki, B.P. Otis, B.A. Parviz, A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. J. Micromech. Microeng. 22, 075007 (2012). https://doi.org/10.1088/0960-1317/22/7/075007

    Article  CAS  Google Scholar 

  109. H. Song, H. Shin, H. Seo, W. Park, B.J. Joo, J. Kim, J. Kim, H.K. Kim, J. Kim, J. Park, Wireless non-invasive monitoring of cholesterol using a smart contact lens. Adv. Sci. 9, 2203597 (2022). https://doi.org/10.1002/advs.202203597

    Article  Google Scholar 

  110. M. Aihara, N. Kubota, T. Minami, R. Shirakawa, Y. Sakurai, T. Hayashi, M. Iwamoto, I. Takamoto, T. Kubota, R. Suzuki et al., Association between tear and blood glucose concentrations: random intercept model adjusted with confounders in tear samples negative for occult blood. J. Diabetes Investig. 12, 266–276 (2021). https://doi.org/10.1111/jdi.13344

    Article  CAS  Google Scholar 

  111. Y.-R. Wang, H.-C. Chuang, A. Tripathi, Y.-L. Wang, M.-L. Ko, C.-C. Chuang, J.-C. Chen, High-sensitivity and trace-amount specimen electrochemical sensors for exploring the levels of β-amyloid in human blood and tears. Anal. Chem. 93, 8099–8106 (2021). https://doi.org/10.1021/acs.analchem.0c04980

    Article  CAS  Google Scholar 

  112. J.H. Han, Y.C. Cho, W.-G. Koh, Y.B. Choy, Preocular sensor system for concurrent monitoring of glucose levels and dry eye syndrome using tear fluids. PLoS ONE 15, e0239317 (2020). https://doi.org/10.1371/journal.pone.0239317

    Article  CAS  Google Scholar 

  113. K. Ogasawara, T. Tsuru, K. Mitsubayashi, I. Karube, Electrical conductivity of tear fluid in healthy persons and keratoconjunctivitis sicca patients measured by a flexible conductimetric sensor. Graefe’s Arch. Clin. Exp. Ophthalmol. 234, 542–546 (1996). https://doi.org/10.1007/BF00448797

    Article  CAS  Google Scholar 

  114. L.R. Azevedo, A.A.S. De Lima, M.Â.N. Machado, A.M.T. Grégio, P.D.V. De Almeida, Saliva composition and functions: a comprehensive review. J. Contemp. Dent. Pract. 9, 72–80 (2008). https://doi.org/10.5005/jcdp-9-3-72

    Article  Google Scholar 

  115. I.T. Gug, M. Tertis, O. Hosu, C. Cristea, Salivary biomarkers detection: analytical and immunological methods overview. Trends Anal. Chem. 113, 301–316 (2019). https://doi.org/10.1016/j.trac.2019.02.020

    Article  CAS  Google Scholar 

  116. Z. Yan, Z. Shi, Y. Wu, J. Lv, P. Deng, G. Liu, Z. An, Z. Che, Y. Lu, J. Shan et al., Wireless, noninvasive therapeutic drug monitoring system for saliva measurement toward medication management of schizophrenia. Biosens. Bioelectron. 234, 115363 (2023). https://doi.org/10.1016/j.bios.2023.115363

    Article  CAS  Google Scholar 

  117. H. Park, W. Park, C.H. Lee, Electrochemically active materials and wearable biosensors for the in situ analysis of body fluids for human healthcare. NPG Asia Mater. 13, 23 (2021). https://doi.org/10.1038/s41427-020-00280-x

    Article  CAS  Google Scholar 

  118. P.R. Miller, R.M. Taylor, B.Q. Tran, G. Boyd, T. Glaros, V.H. Chavez, R. Krishnakumar, A. Sinha, K. Poorey, K.P. Williams et al., Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun. Biol. 1, 173 (2018). https://doi.org/10.1038/s42003-018-0170-z

    Article  CAS  Google Scholar 

  119. C.-I. Kim, J.-H. Lee, The non-contact biometric identified bio signal measurement sensor and algorithms. THC 26, 215–228 (2018). https://doi.org/10.3233/THC-174569

    Article  Google Scholar 

  120. M. Scarsella, G. Barile, V. Stornelli, L. Safari, G. Ferri, A survey on current-mode interfaces for bio signals and sensors. Sensors 23, 3194 (2023). https://doi.org/10.3390/s23063194

    Article  CAS  Google Scholar 

  121. C. He, C.-R. Phang, T.-P. Jung, L.-W. Ko, Diversity and suitability of the state-of-the-art wearable and wireless EEG systems review. IEEE J. Biomed. Health Inform. 27 (2023).

  122. W. He, Y. Zhao, H. Tang, C. Sun, W. Fu, A wireless BCI and BMI system for wearable robots. IEEE Trans. Syst. Man Cybern. Syst. 46, 936–946 (2016). https://doi.org/10.1109/TSMC.2015.2506618

    Article  Google Scholar 

  123. G. Niso, E. Romero, J.T. Moreau, A. Araujo, L.R. Krol, Wireless EEG: a survey of systems and studies. Neuroimage 269, 119774 (2023). https://doi.org/10.1016/j.neuroimage.2022.119774

    Article  Google Scholar 

  124. S.L. Eagleman, C.M. Drover, X. Li, M.B. MacIver, D.R. Drover, Offline comparison of processed electroencephalogram monitors for anaesthetic-induced electroencephalogram changes in older adults. Br. J. Anaesth. 126, 975–984 (2021). https://doi.org/10.1016/j.bja.2020.12.042

    Article  CAS  Google Scholar 

  125. K.K. MacKenzie, A.M. Britt-Spells, L.P. Sands, J.M. Leung, Processed electroencephalogram monitoring and postoperative delirium. Anesthesiology 129, 417–427 (2018). https://doi.org/10.1097/ALN.0000000000002323

    Article  Google Scholar 

  126. M. Chochoi, L. Tyvaert, P. Derambure, W. Szurhaj, Is long-term electroencephalogram more appropriate than standard electroencephalogram in the elderly? Clin. Neurophysiol. 128, 270–274 (2017). https://doi.org/10.1016/j.clinph.2016.10.006

    Article  CAS  Google Scholar 

  127. J. Wu, R. Srinivasan, E. Burke Quinlan, A. Solodkin, S.L. Small, S.C. Cramer, Utility of EEG measures of brain function in patients with acute stroke. J. Neurophysiol. 115, 2399–2405 (2016). https://doi.org/10.1152/jn.00978.2015

    Article  Google Scholar 

  128. A. Searle, L. Kirkup, A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 21, 271–283 (2000). https://doi.org/10.1088/0967-3334/21/2/307

    Article  CAS  Google Scholar 

  129. R. Kaveh, J. Doong, A. Zhou, C. Schwendeman, K. Gopalan, F.L. Burghardt, A.C. Arias, M.M. Maharbiz, R. Muller, Wireless user-generic ear EEG. IEEE Trans. Biomed. Circuits Syst. 14, 727–737 (2020). https://doi.org/10.1109/TBCAS.2020.3001265

    Article  Google Scholar 

  130. K.S. Gangadharan, A.P. Vinod, Drowsiness detection using portable wireless EEG. Comput. Methods Programs Biomed. 214, 106535 (2022)

    Article  Google Scholar 

  131. H.-C. Seo, G.-W. Yoon, S. Joo, G.-B. Nam, Multiple electrocardiogram generator with single-lead electrocardiogram. Comput. Methods Programs Biomed. 221, 106858 (2022). https://doi.org/10.1016/j.cmpb.2022.106858

    Article  Google Scholar 

  132. Y. Xuan, H. Hara, S. Honda, Y. Li, Y. Fujita, T. Arie, S. Akita, K. Takei, Wireless, minimized, stretchable, and breathable electrocardiogram sensor system. Appl. Phys. Rev. 9, 011425 (2022). https://doi.org/10.1063/5.0082863

    Article  CAS  Google Scholar 

  133. A.J. Boe, L.L. McGee Koch, M.K. O’Brien, N. Shawen, J.A. Rogers, R.L. Lieber, K.J. Reid, P.C. Zee, A. Jayaraman, Automating sleep stage classification using wireless, wearable sensors. NPJ Digit. Med. 2, 131 (2019). https://doi.org/10.1038/s41746-019-0210-1

    Article  Google Scholar 

  134. L. Xie, Z. Li, Y. Zhou, Y. He, J. Zhu, Computational diagnostic techniques for electrocardiogram signal analysis. Sensors 20, 6318 (2020). https://doi.org/10.3390/s20216318

    Article  Google Scholar 

  135. J.-C. Heo, J. Park, S. Kim, J. Ku, J.-H. Lee, Development and application of wireless power transmission systems for wireless ECG sensors. Journal of Sensors 2018, 1–7 (2018). https://doi.org/10.1155/2018/5831056

    Article  Google Scholar 

  136. N. Rodeheaver, H. Kim, R. Herbert, H. Seo, W.-H. Yeo, Breathable, wireless, thin-film wearable biopatch using noise-reduction mechanisms. ACS Appl. Electron. Mater. 4, 503–512 (2022). https://doi.org/10.1021/acsaelm.1c01107

    Article  CAS  Google Scholar 

  137. J.-H. Lee, D.-W. Seo, Development of ECG monitoring system and implantable device with wireless charging. Micromachines 10, 38 (2019). https://doi.org/10.3390/mi10010038

    Article  CAS  Google Scholar 

  138. J. Wannenburg, R. Malekian, G.P. Hancke, Wireless capacitive-based ECG sensing for feature extraction and mobile health monitoring. IEEE Sens. J. 18, 6023–6032 (2018). https://doi.org/10.1109/JSEN.2018.2844122

    Article  Google Scholar 

  139. N. Dey, A.S. Ashour, F. Shi, S.J. Fong, R.S. Sherratt, Developing residential wireless sensor networks for ECG healthcare monitoring. IEEE Trans. Consum. Electron. 63, 442–449 (2017). https://doi.org/10.1109/TCE.2017.015063

    Article  Google Scholar 

  140. H. Kim, Y. Kwon, C. Zhu, F. Wu, S. Kwon, W. Yeo, H.J. Choo, Real-time functional assay of volumetric muscle loss injured mouse masseter muscles via nanomembrane electronics. Advanced Science 8, 2101037 (2021). https://doi.org/10.1002/advs.202101037

    Article  CAS  Google Scholar 

  141. Z.O. Khokhar, Z.G. Xiao, C. Menon, Surface EMG pattern recognition for real-time control of a wrist exoskeleton. BioMed Eng OnLine 9, 41 (2010). https://doi.org/10.1186/1475-925X-9-41

    Article  Google Scholar 

  142. C. Castellini, P. Van Der Smagt, Surface EMG in advanced hand prosthetics. Biol. Cybern. 100, 35–47 (2009). https://doi.org/10.1007/s00422-008-0278-1

    Article  Google Scholar 

  143. S. Lee, J. Yoon, D. Lee, D. Seong, S. Lee, M. Jang, J. Choi, K.J. Yu, J. Kim, S. Lee et al., Wireless epidermal electromyogram sensing system. Electronics 9, 269 (2020). https://doi.org/10.3390/electronics9020269

    Article  CAS  Google Scholar 

  144. Y. Fukuoka, K. Miyazawa, H. Mori, M. Miyagi, M. Nishida, Y. Horiuchi, A. Ichikawa, H. Hoshino, M. Noshiro, A. Ueno, Development of a compact wireless Laplacian electrode module for electromyograms and its human interface applications. Sensors 13, 2368–2383 (2013). https://doi.org/10.3390/s130202368

    Article  Google Scholar 

  145. K. Lee, Y.Y. Choi, D.J. Kim, H.Y. Chae, K. Park, Y.M. Oh, S.H. Woo, J.J. Kim, A wireless ExG interface for patch-type ECG holter and EMG-controlled robot hand. Sensors 2017, 17 (1888). https://doi.org/10.3390/s17081888

    Article  Google Scholar 

  146. Y.-H. Yang, S.-J. Ruan, P.-C. Chen, Y.-T. Liu, Y.-H. Hsueh, A low-cost wireless multichannel surface EMG acquisition system. IEEE Consumer Electron. Mag. 9, 14–19 (2020). https://doi.org/10.1109/MCE.2020.2986792

    Article  Google Scholar 

  147. B. Shi, Wearable exercise monitoring equipment for physical exercise teaching process based on wireless sensor. Microprocess. Microsyst. 81, 103791 (2021). https://doi.org/10.1016/j.micpro.2020.103791

    Article  Google Scholar 

  148. V. Galli, S.K. Sailapu, T.J. Cuthbert, C. Ahmadizadeh, B.C. Hannigan, C. Menon, Passive and wireless all-textile wearable sensor system. Adv. Sci. (2023). https://doi.org/10.1002/advs.202206665

    Article  Google Scholar 

  149. F.J. He, M. Tan, J. Song, G.A. MacGregor, Salt substitution to lower population blood pressure. Nat. Med. 26, 313–314 (2020). https://doi.org/10.1038/s41591-020-0784-9

    Article  CAS  Google Scholar 

  150. R. Aggarwal, V. Gunaseelan, D. Manual, M. Sanker, S. Prabaaker, Clinical evaluation of a wireless device for monitoring vitals in newborn babies. Indian J. Pediatr. (2023). https://doi.org/10.1007/s12098-022-04459-8

    Article  Google Scholar 

  151. A. Chen, J. Zhang, L. Zhao, R.D. Rhoades, D.-Y. Kim, N. Wu, J. Liang, J. Chae, Machine-learning enabled wireless wearable sensors to study individuality of respiratory behaviors. Biosens. Bioelectron. 173, 112799 (2021). https://doi.org/10.1016/j.bios.2020.112799

    Article  CAS  Google Scholar 

  152. A. Chen, A.J. Halton, R.D. Rhoades, J.C. Booth, X. Shi, X. Bu, N. Wu, J. Chae, Wireless wearable ultrasound sensor on a paper substrate to characterize respiratory behavior. ACS Sens. 4, 944–952 (2019). https://doi.org/10.1021/acssensors.9b00043

    Article  CAS  Google Scholar 

  153. T. Elfaramawy, C.L. Fall, S. Arab, M. Morissette, F. Lellouche, B. Gosselin, A wireless respiratory monitoring system using a wearable patch sensor network. IEEE Sens. J. 19, 650–657 (2019). https://doi.org/10.1109/JSEN.2018.2877617

    Article  Google Scholar 

  154. H.-K. Wu, Y.-S. Ko, Y.-S. Lin, H.-T. Wu, T.-H. Tsai, H.-H. Chang, The correlation between pulse diagnosis and constitution identification in traditional Chinese medicine. Complement. Ther. Med. 30, 107–112 (2017). https://doi.org/10.1016/j.ctim.2016.12.005

    Article  Google Scholar 

  155. N.G.R. De Moura, I. Cordovil, A. De Sa Ferreira, Traditional Chinese medicine wrist pulse-taking is associated with pulse waveform analysis and hemodynamics in hypertension. J. Integr. Med. 14, 100–113 (2016). https://doi.org/10.1016/S2095-4964(16)60233-9

    Article  Google Scholar 

  156. J.-H. Zhang, Z. Li, J. Xu, J. Li, K. Yan, W. Cheng, M. Xin, T. Zhu, J. Du, S. Chen et al., Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 13, 5839 (2022). https://doi.org/10.1038/s41467-022-33454-y

    Article  CAS  Google Scholar 

  157. S. Min, D.H. Kim, D.J. Joe, B.W. Kim, Y.H. Jung, J.H. Lee, B. Lee, I. Doh, J. An, Y. Youn et al., Clinical validation of wearable piezoelectric blood pressure sensor for continuous health monitoring. Adv. Mater. (2023). https://doi.org/10.1002/adma.202301627

    Article  Google Scholar 

  158. W. Liao, J. Shi, J. Wang, Electromagnetic interference of wireless power transfer system on wearable electrocardiogram. IET Microw. Antennas Propag. 11, 330–335 (2017). https://doi.org/10.1049/iet-map.2016.0119

    Article  Google Scholar 

  159. T. Wang, X. Liu, N. Jin, H. Tang, X. Yang, M. Ali, Wireless power transfer for battery powering system. Electronics 7, 178 (2018). https://doi.org/10.3390/electronics7090178

    Article  Google Scholar 

  160. S.S. Hassan, S.D. Bibon, M.S. Hossain, M. Atiquzzaman, Security threats in bluetooth technology. Comput. Secur. 74, 308–322 (2018). https://doi.org/10.1016/j.cose.2017.03.008

    Article  Google Scholar 

  161. H. Nesser, H.A. Mahmoud, G. Lubineau, High-sensitivity RFID sensor for structural health monitoring. Adv. Sci. (2023). https://doi.org/10.1002/advs.202301807

    Article  Google Scholar 

  162. A. Lazaro, M. Boada, R. Villarino, D. Girbau, Color measurement and analysis of fruit with a battery-less NFC sensor. Sensors 19, 1741 (2019). https://doi.org/10.3390/s19071741

    Article  Google Scholar 

  163. M. El Khamlichi, A. Alvarez Melcon, O. El Mrabet, M.A. Ennasar, J. Hinojosa, Flexible UHF RFID tag for blood tubes monitoring. Sensors 19, 4903 (2019). https://doi.org/10.3390/s19224903

    Article  CAS  Google Scholar 

  164. C. He, R.K. Chikara, C.-L. Yeh, L.-W. Ko, Neural dynamics of target detection via wireless EEG in embodied cognition. Sensors 21, 5213 (2021). https://doi.org/10.3390/s21155213

    Article  Google Scholar 

  165. R. Chai, G.R. Naik, S.H. Ling, H.T. Nguyen, Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems. BioMed. Eng. OnLine 16, 5 (2017). https://doi.org/10.1186/s12938-016-0303-x

    Article  Google Scholar 

  166. T. Vuorinen, K. Noponen, A. Vehkaoja, T. Onnia, E. Laakso, S. Leppänen, K. Mansikkamäki, T. Seppänen, M. Mäntysalo, Validation of printed, skin-mounted multilead electrode for ECG measurements. Adv Mater. Technol. 4, 1900246 (2019). https://doi.org/10.1002/admt.201900246

    Article  CAS  Google Scholar 

  167. L.-H. Wang, W. Zhang, M.-H. Guan, S.-Y. Jiang, M.-H. Fan, P.A.R. Abu, C.-A. Chen, S.-L. Chen, A low-power high-data-transmission multi-lead ECG acquisition sensor system. Sensors 19, 4996 (2019). https://doi.org/10.3390/s19224996

    Article  Google Scholar 

  168. M.-S. Song, S.-G. Kang, K.-T. Lee, J. Kim, Wireless, skin-mountable EMG sensor for human-machine interface application. Micromachines 10, 879 (2019). https://doi.org/10.3390/mi10120879

    Article  Google Scholar 

  169. X. Chen, Z.J. Wang, Pattern recognition of number gestures based on a wireless surface EMG system. Biomed. Signal Process. Control 8, 184–192 (2013). https://doi.org/10.1016/j.bspc.2012.08.005

    Article  Google Scholar 

  170. G. Biagetti, P. Crippa, L. Falaschetti, A. Mansour, C. Turchetti, Energy and performance analysis of lossless compression algorithms for wireless EMG sensors. Sensors 21, 5160 (2021). https://doi.org/10.3390/s21155160

    Article  Google Scholar 

  171. Y. Feng, E. Benassi, L. Zhang, X. Li, D. Wang, F. Zhou, W. Liu, Concealed wireless warning sensor based on triboelectrification and human-plant interactive induction. Research (2021). https://doi.org/10.34133/2021/9870936

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development program of China under Grant No. 2021YFA1401103; China National Funds for Distinguished Young Scientists under Grant 61825403; the National Natural Science Foundation of China under Grants 61921005, 61674078, and 82370520; and the Nanjing Scientific & Technological Talents Program.

Funding

Funding was provided by the National Key Research and Development Program of China (2021YFA1401103), China National Funds for Distinguished Young Scientists (61825403), the National Natural Science Foundation of China (61921005, 61674078, 82370520), and Nanjing Scientific & Technological Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Liu, Yi Shi or Lijia Pan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Hua, J., Sun, X. et al. Wireless Wearable Devices and Recent Applications in Health Monitoring and Clinical Diagnosis. Biomedical Materials & Devices (2023). https://doi.org/10.1007/s44174-023-00141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-023-00141-5

Keywords

Navigation