Skip to main content

Body Sensor Networks for Healthcare: Advancements and Solutions

  • Chapter
  • First Online:
Pervasive Healthcare

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

Advancements in wireless sensor networks and miniaturization of sensors led to an emergence of a special class of networks called body sensor networks (BSNs). In this chapter, we present a review of advancements in BSNs pertaining to healthcare applications. We consider wearable as well as nonwearable BSNs together with schemes and solutions. We point out issues and challenges pertaining to BSNs. We present research related to different architectural frameworks for BSNs. We describe research related to advancement in sensor technology, protocols, and schemes for wireless body area networks. Further, we describe research related to privacy and security in case of BSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Rasyid, M. U. H., Prasetyo, D., Nadhori, I. U., & Alasiry, A. H. (2015). Mobile monitoring of muscular strain sensor based on wireless body area network. In International electronics symposium (IES) (pp. 284–287). IEEE.

    Google Scholar 

  2. Braem, B., De Cleyn, P., & Blondia, C. (2010). Supporting mobility in body sensor networks. In IEEE international conference on body sensor networks (pp. 52–55). IEEE.

    Google Scholar 

  3. Chi, Y. M., & Cauwenberghs, G. (2010). Wireless non-contact EEG/ECG electrodes for body sensor networks. In International conference on body sensor networks (pp. 297–301). IEEE.

    Google Scholar 

  4. Pandit, J. A., Lores, E., & Batlle, D. (2020). Cu_ess blood pressure monitoring: Promises and challenges. Clinical Journal of the American Society of Nephrology, 15(10), 1531–1538.

    Article  Google Scholar 

  5. Ding, X., Dai, W., Luo, N., Liu, J., Zhao, N., & Zhang, Y. (2015). A flexible tonoarteriography-based body sensor network for cuffless measurement of arterial blood pressure. In 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN) (pp. 1–4). IEEE.

    Google Scholar 

  6. Yang, G.-Z. (2008). Cognitive sensing for body sensor networks. Sensors, 2008, 612.

    Google Scholar 

  7. Lo, B., Deligianni, F., & Yang, G. Z. (2006). Source recovery for body sensor network. In International workshop on wearable and implantable body sensor networks (BSN) (p. 4). Springer.

    Google Scholar 

  8. Zhou, G., Wan, C., Yarvis, M. D., & Stankovic, J. A. (2007). Aggregator-centric qos for body sensor networks. In IEEE 6th international symposium on information processing in sensor networks (pp. 539–540). IEEE.

    Google Scholar 

  9. Wu, Z., Xiao, D., Peng, X., Xu, H., & Zhuang, X. (2008). Human body network: Network in the future? In IEEE international symposium on knowledge acquisition and modeling workshop (pp. 578–581). IEEE.

    Chapter  Google Scholar 

  10. Sabti, H. A., & Thiel, D. V. (2014). Time multiplexing-star shape body sensor network for sports applications. In IEEE antennas and propagation society international symposium (APSURSI) (pp. 969–970). IEEE.

    Chapter  Google Scholar 

  11. Davenport, D. M., Deb, B., & Ross, F. J. (2009). Wireless propagation and coexistence of medical body sensor networks for ambulatory patient monitoring. In IEEE sixth international workshop on wearable and implantable body sensor networks (pp. 41–45). IEEE.

    Google Scholar 

  12. Abdur Rahman, M., El Saddik, A., & Gueaieb, W. (2009). Data visualization: From body sensor network to social networks. In IEEE international workshop on robotic and sensors environments (pp. 157–162). IEEE.

    Chapter  Google Scholar 

  13. Bajcsy, R. (2010). A wireless body sensor network for different health related applications. In IEEE international conference on sensor networks, ubiquitous, and trustworthy computing (p. 1). IEEE.

    Google Scholar 

  14. Kuryloski, P., Giani, A., Giannantonio, R., Gilani, K., Gravina, R., Seppa, V., Seto, E., Shia, V., Wang, C., Yan, P., Yang, A. Y., Hyttinen, J., Sastry, S., Wicker, S., & Bajcsy, R. (2009). Dexternet: An open platform for heterogeneous body sensor networks and its applications. In IEEE sixth international workshop on wearable and implantable body sensor networks (pp. 92–97). IEEE.

    Google Scholar 

  15. Bulaghi, Z. A., Navin, A. H. Z., Hosseinzadeh, M., & Rezaee, A. (2020). Senet: A novel architecture for IOT-based body sensor networks. Informatics in Medicine Unlocked, 20, 100365.

    Article  Google Scholar 

  16. Elmiligi, H., Gebali, F., Watheq El-Kharashi, M., & Morgan, A. A. (2015). Traffic analysis of multi-core body sensor networks based on wireless noc infrastructure. In IEEE pacific rim conference on communications, computers and signal processing (PACRIM) (pp. 201–204). IEEE.

    Google Scholar 

  17. Shukla, S., Hassan, M. F., Jung, L. T., Awang, A., & Khan, M. K. (2019). A 3-tier architecture for network latency reduction in healthcare internet-of-things using fog computing and machine learning. In Proceedings of the 8th international conference on software and computer applications (ICSCA) (pp. 522–528). Association for Computing Machinery.

    Google Scholar 

  18. Barnes, J., Ramachandra, V., Gilani, K., Guenterberg, E., Ghasemzadeh, H., & Jafari, R. (2008). Locomotion monitoring using body sensor networks. In International conference on information processing in sensor networks (IPSN) (pp. 555–556). ACM.

    Google Scholar 

  19. Dias, D., & Cunha, J. P. S. (2018). Wearable health devices - vital sign monitoring, systems and technologies. Sensors, 18(8), 2414.

    Article  Google Scholar 

  20. Kim, Y. K., Wang, H., & Mahmud, M. S. (2016). Wearable body sensor network for healthcare applications. In V. Koncar (Ed.), Smart textiles and their applications (Woodhead publishing series in textiles) (pp. 161–184). Woodhead Publishing.

    Chapter  Google Scholar 

  21. Lin, R., Kim, H.-J., Achavananthadith, S., Kurt, S. A., Tan, S. C. C., Yao, H., Tee, B. C. K., Lee, J. K. W., & Ho, J. S. (2020). Wireless battery-free body sensor networks using near-field-enabled clothing. Nature Communications, 11, 444.

    Article  Google Scholar 

  22. Luprano, J., Sola, J., Dasen, S., Koller, J. M., & Chetelat, O. (2006). Combination of body sensor networks and on-body signal processing algorithms: the practical case of myheart project. In International workshop on wearable and implantable body sensor networks (BSN) (p. 79). IEEE.

    Google Scholar 

  23. Tian, X., Zhang, M., & Ho, J. S. (2019). Robust and high-efficiency wireless body area networks with spoof surface plasmons on clothing. In IEEE MTT-S International Microwave Symposium (IMS) (pp. 1507–1510). IEEE.

    Chapter  Google Scholar 

  24. Tian, X., Lee, P. M., Tan, Y. J., Tina, L. Y. W., Yao, H., Zhang, M., Li, Z., Ng, K. A., Tee, C. K., & Ho, J. S. (2019). Wireless body sensor networks based on metamaterial textiles. Nature Electronics, 2, 243–251.

    Article  Google Scholar 

  25. Silveira, M. H., Nunn, C., Lakhanpal, A., McDonagh, D., McPartland, R., & Burdett, A. (2009). Key considerations and experience using the ultra low power sensium platform in body sensor networks. In Sixth international workshop on wearable and implantable body sensor networks (pp. 262–266). IEEE.

    Chapter  Google Scholar 

  26. Rashid, T., Kumar, S., & Kumar, A. (2017). Effect of body node coordinator (BNC) positions on the performance of intra-body sensor network (intra-wbsn). In 4th IEEE international conference on power, control and embedded systems (ICPCES) (pp. 1–6). IEEE.

    Google Scholar 

  27. Rashid, T., Kumar, S., & Kumar, A. (2017). Reer: Relay based energy efficient routing for intra body sensor network (intra-wbsn). In 4th international conference on signal processing and integrated networks (SPIN) (pp. 222–227). IEEE.

    Google Scholar 

  28. Sun, W., Yu, G., & Wong, W.-C. (2012). Inter-user interference in body sensor networks: A case study in moderate-scale deployment in hospital environment. In IEEE 14th international conference on e-Health networking, applications and services (Healthcom) (pp. 447–450). IEEE.

    Chapter  Google Scholar 

  29. Yu, R., Mak, T. W. C., Zhang, R., Wong, S. H., Zheng, Y., Lau, J. Y. W., & Poon, C. C. Y. (2017). Smart healthcare: Cloud-enabled body sensor networks. In IEEE 14th international conference on wearable and implantable body sensor networks (BSN) (pp. 99–102). IEEE.

    Chapter  Google Scholar 

  30. Yu, R., Yang, G., & Lo, B. P. L. (2014). Autonomic body sensor networks. In IEEE MTT-S international microwave workshop series on RF and wireless technologies for biomedical and healthcare applications (IMWS-Bio) (pp. 1–3). IEEE.

    Google Scholar 

  31. Yuce, M. R. (2013). Recent wireless body sensors: Design and implementation. In IEEE MTT-S international microwave workshop series on RF and wireless technologies for biomedical and healthcare applications (IMWS-BIO) (pp. 1–3). IEEE.

    Google Scholar 

  32. Salibindla, S., Ripoche, B., Lai, D. T. H., & Maas, S. (2013). Characterization of a new flexible pressure sensor for body sensor networks. In IEEE eighth international conference on intelligent sensors, sensor networks and information processing (pp. 27–31). IEEE.

    Google Scholar 

  33. Buckley, J., O’Flynn, B., Loizou, L., Haigh, P., Boyle, D., Angove, P., Barton, J., O’Mathuna, C., Popovici, E., & O’Connell, S. (2012). A novel and miniaturized 433/868mhz multi-band wireless sensor platform for body sensor network applications. In Ninth international conference on wearable and implantable body sensor networks (pp. 63–66). ACM.

    Chapter  Google Scholar 

  34. Meng, Y., Qin, T., & Xing, J. (2014). Sensor cooperation based on network coding in wireless body area networks. In International conference on wireless communication and sensor network (pp. 358–361). ACM.

    Chapter  Google Scholar 

  35. Rydberg, A., van Engen, P., Cheng, S., van Doremalen, R., Sanduleanu, M., Hjort, K., De Raedt, W., Fritzsch, T., & Hallbjorner, P. (2009). Body surface backed exible antennas and 3d si-level integrated wireless sensor nodes for 17 ghz wireless body area networks. In 2nd IET seminar on antennas and propagation for body-centric wireless communications (pp. 1–4). IEEE.

    Google Scholar 

  36. Wang, Z., Hou, R., & Zhou, Z. (2016). An android/osgi-based mobile gateway for body sensor network. In 15th international symposium on parallel and distributed computing (ISPDC) (pp. 135–140). IEEE.

    Chapter  Google Scholar 

  37. Zhang, K., Song, Y., & Peng, J. (2018). Research on body sensor network based on the capacitive coupling intra-body communication using a mach-zehnder electro-optical sensor. In 2nd IEEE advanced information management, communicates, electronic and automation control conference (IMCEC) (pp. 2336–2340). IEEE.

    Google Scholar 

  38. Liu, S., Wang, K., Guo, J., Wang, Y., & Qi, X. (2015). Review on mac protocols in energy-harvesting wireless body area networks. In IEEE international conference on identification, information, and knowledge in the internet of things (IIKI) (pp. 303–304). IEEE.

    Google Scholar 

  39. Geller, T., David, Y. B., Khmelnitsky, E., Ben-Gal, I., Ward, A., Miller, D., & Bambos, N. (2019). Learning health state transition probabilities via wireless body area networks. In IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

    Google Scholar 

  40. Kim, K., Lee, I., Yoon, M., Kim, J., Lee, H., & Han, K. (2009). An efficient routing protocol based on position information in mobile wireless body area sensor networks. In First international conference on networks communications (pp. 396–399). IEEE.

    Google Scholar 

  41. Mao, J., Wang, W., Ding, G., & Zhang, Z. (2019). Live demonstration: Wearable body area network system based on low power body channel communication. In IEEE biomedical circuits and systems conference (BioCAS) (p. 1). IEEE.

    Google Scholar 

  42. Tseng, H., Wu, R., & Wu, Y. (2016). An efficient cross-layer reliable retransmission scheme for the human body shadowing in IEEE 802.15.6-based wireless body area networks. IEEE Sensors Journal, 16(9), 3282–3292.

    Article  Google Scholar 

  43. Yang, X., Wang, L., & Zhang, Z. (2018). Wireless body area networks mac protocol for energy efficiency and extending lifetime. IEEE Sensors Letters, 2(1), 1–4.

    Article  Google Scholar 

  44. Romaissa, B., & Eddine, B. D. (2017). In-body routing protocols for wireless body sensor networks. In IEEE 10th international conference on developments in eSystems engineering (DeSE) (pp. 160–165). IEEE.

    Google Scholar 

  45. Kim, B.-S., Kang, S. Y., Lim, J. H., Kim, K. H., & Kim, K.-I. (2017). A mobility-based temperature-aware routing protocol for wireless body sensor networks. In IEEE international conference on information networking (ICOIN) (pp. 63–66). IEEE.

    Google Scholar 

  46. Zhong, L., Sinclair, M., & Bittner, R. (2006). A phone-centered body sensor network platform cost, energy efficiency user interface. In IEEE international workshop on wearable and implantable body sensor networks (BSN) (p. 182). IEEE.

    Google Scholar 

  47. Geng, D., Zhao, Z., Fang, Z., Xuan, Y., Zhao, J., Wu, S., Xu, J., & Du, L. (2010). Grdt: Group-based reliable data transport in wireless body area sensor networks. In IET international conference on wireless sensor network (IET-WSN) (pp. 385–392). IEEE.

    Google Scholar 

  48. Ma, Y., & Wang, Y. (2009). Optimization design of undermine wireless sensor network based on genetic quantum algorithm. In 2009 Chinese control and decision conference (pp. 4697–4701). IEEE.

    Google Scholar 

  49. Yong, M., Yu, Y., Yan, W., Huludao, L., Gang, L., & Ling, L. (2009). Optimization design of coal mine wireless body sensor network based on genetic algorithm. In IEEE international conference on networks security, wireless communications and trusted computing (Vol. 2, pp. 366–369). IEEE.

    Google Scholar 

  50. Michaelides, C., & Pavlidou, F. (2019). Programmable mac in body area networks, one command at a time. IEEE Sensors Letters, 3(7), 1–4.

    Article  Google Scholar 

  51. Enkoji, A., Li, M., Brisky, J. D., & Melvin, R. (2019). Dynamic EAP based mac protocol for wireless body area networks. In IEEE international conference on computing, networking and communications (ICNC) (pp. 531–536). IEEE.

    Google Scholar 

  52. Bhatia, A., & Patro, R. K. (2016). Pmac: A poll-based mac protocol for wireless body area networks (WBANS). In IEEE international conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6). IEEE.

    Google Scholar 

  53. Wang, J., Xie, Y., & Yi, Q. (2015). An all dynamic mac protocol for wireless body area network. In 11th IEEE international conference on wireless communications, networking and mobile computing (WiCOM 2015) (pp. 1–6). IEEE.

    Google Scholar 

  54. Schlsser, M., Rzezniczek, L., Akgn, F., Ying, H., Seyrafi, A., & Schiek, M. (2009). Optimized network layer protocol for sensor driven autonomous real-time data fusion in a star bsn. In IEEE international conference on intelligent sensors, sensor networks and information processing (ISSNIP) (pp. 279–282). IEEE.

    Google Scholar 

  55. Sawaneh, I. A., Sankoh, I., & Koroma, D. K. (2017). A survey on security issues and wearable sensors in wireless body area network for healthcare system. In IEEE 14th international computer conference on wavelet active media technology and information processing (ICCWAMTIP) (pp. 304–308). IEEE.

    Google Scholar 

  56. Morchon, O. G., Baldus, H., & Sanchez, D. S. (2006). Resource-efficient security for medical body sensor networks. In International workshop on wearable and implantable body sensor networks (BSN) (p. 83). IEEE.

    Google Scholar 

  57. Bhattacharya, P., Tanwar, S., Bodke, U., Tyagi, S., & Kumar, N. (2019). Bindaas: Blockchain-based deep-learning as-a-service in healthcare 4.0 applications. In IEEE transactions on network science and engineering (p. 1). IEEE.

    Google Scholar 

  58. Hai, T., Bhuiyan, M. Z. A., Wang, J., Wang, T., Hsu, D. F., Li, Y., Salih, S. Q., Wu, J., & Liu, P. (2020). Dependdata: Data collection dependability through three-layer decision-making in BSNS for healthcare monitoring. Information Fusion, 62, 32–46.

    Article  Google Scholar 

  59. Bao, S.-D., & Zhang, Y.-T. (2006). A design proposal of security architecture for medical body sensor networks. In IEEE international workshop on wearable and implantable body sensor networks (BSN) (p. 90). IEEE.

    Google Scholar 

  60. Toorani, M. (2015). On vulnerabilities of the security association in the IEEE 802.15.6 standard. In M. Brenner, N. Christin, B. Johnson, & K. Rohloff (Eds.), International conference on financial cryptography and data security (FC) (Vol. 8976, pp. 245–260). Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ash Mohammad Abbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbas, A.M. (2022). Body Sensor Networks for Healthcare: Advancements and Solutions. In: Husain, M.S., Adnan, M.H.B.M., Khan, M.Z., Shukla, S., Khan, F.U. (eds) Pervasive Healthcare. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-77746-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77746-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77745-6

  • Online ISBN: 978-3-030-77746-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics