Skip to main content

Advertisement

Log in

State-of-the-Art of Synthesized Exosomes and NPs-Based Biomimetic Nanoparticles for Wound Rehabilitation: A Review

  • Review
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Wound regeneration is a typical physiological mechanism consisting of a series of molecular and cellular processes that take place after the commencement of a tissue lesion to reestablish a barrier between the body and the external surroundings. Chronic non-healing wounds, on the other hand, require additional therapeutic qualities which could be obtained by using exosomes (Exo) and nanoparticles (NPs) to stimulate rapid and superior healing results. Many scientists have worked to understand the mechanisms of wound healing, and there are several reviews on the subject. To the best of our understanding, nevertheless, there has been little study on the utilization of Exo and NPs in wound healing. Our research aims to bridge that knowledge gap. This study first reviews previous studies on wounds and standard wound management methods. To close the gap in current research, we extensively discuss the state-of-the-art in engineered BioM-based wound healing approaches, including engineered exosome BioM-based procedures and nanoparticle-based BioMs for wound healing. Furthermore, current applications of BioM-based wound healing techniques are described. This study then closes by reviewing existing knowledge and discussing the multiple applications of synthesized BioM NPs for infectious wound healing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

antBA:

Antibacterial activity

ADMSCs:

Adipose-derived mesenchymal stem cells

ADSCs:

Adipose-derived stem cells

Ag NPs:

Silver nanoparticles

Biomimetics:

BioMs

BMSCs:

Bone marrow-derived MSCs

CBC:

Caryocar brasiliense Cambess

CNT-PDA:

Carbon nanotubes- dopamine

CO NPs:

Cerium oxide nanoparticles

EVs:

Extracellular vesicles

Exo:

Exosome

FT-IR:

Fourier transforms infrared

G-MSC:

Gingival- mesenchymal stem cells

GelMA:

Gelatin methacryloyl

GFs:

Growth factors

GT-PDA:

Gelati-dopamine

hADSCs:

Human adipose-derived stem cells

hucMSCs:

Human umbilical cord mesenchymal stem cells

LPS pre-MSCs:

LPS-preconditioned mesenchymal stromal cells

MSC-Exosomes:

Mesenchymal stem cell-derived exos

MPO:

Mentha pulegium essential oil

N-SuC NPs:

N-succinyl chitosan

NanoTech:

Nanotechnology

NMeds:

Nanomedicines

NMats:

Nanomaterials

NPs:

Nanoparticles

NSLCs:

Nanostructured lipid carriers

Me NPs:

Metal nanoparticles

PECE:

Poly (ethylene glycol)-poly(ε-caprolactone)-poly (ethylene glycol)

PHPV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

rPDA:

Reduced polydopamine

SA:

Sodium alginate

SeNPs:

Selenium Nanoparticles

SLi NPs:

Solid Lipid NPs

SMSCs:

Synovium mesenchymal stem cells

XRD:

X-ray diffraction

ZnO NP:

Zinc oxide nanoparticles

ZnO/SA:

Zinc oxide/sodium alginate

ZnO/Mgt-NCs:

Zn O/Magnetite-based nanocomposites

References

  1. J.A.D. Whitney, Overview: acute and chronic wounds. Nurs. Clin. N. Am. 40, 191–205 (2005). https://doi.org/10.1016/J.CNUR.2004.09.002

    Article  Google Scholar 

  2. M. Rodrigues, N. Kosaric, C.A. Bonham, G.C. Gurtner, Wound healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019). https://doi.org/10.1152/PHYSREV.00067.2017

    Article  CAS  PubMed  Google Scholar 

  3. X. Zhan, Z. Wen, X. Chen, Q. Lei, Y. Chen, L. Zhou, G. Zheng, F. Kong, J. Guo, Y. Duan, Y. Lai, P. Yin, C.J. Brinker, H. Chen, W. Zhu, Polyphenol-mediated biomimetic mineralization of sacrificial metal-organic framework nanoparticles for wound healing. Cell. Rep. Phys. Sci. 3, 101103 (2022). https://doi.org/10.1016/J.XCRP.2022.101103

    Article  CAS  Google Scholar 

  4. ECB12: 12th European Congess on Biotechnology, J Biotechnol. 118 (2005) 1–189. https://doi.org/10.1016/J.JBIOTEC.2005.06.005.

  5. F. Nudelman, N.A.J.M. Sommerdijk, Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed. 51, 6582–6596 (2012). https://doi.org/10.1002/ANIE.201106715

    Article  CAS  Google Scholar 

  6. G. Mangone, R.L. Dopko, J.M. Zelenski, Deciphering landscape preferences: investigating the roles of familiarity and biome types. Landsc. Urban Plan. 214, 104189 (2021). https://doi.org/10.1016/j.landurbplan.2021.104189

    Article  Google Scholar 

  7. V. Tallapaneni, D. Pamu, T.N. Shilpa, V.V. Satyanarayana Reddy Karri, S.K. Mohankumar, Emerging role of inorganic and metal nanoparticles for the delivery of combination of drugs in wound healing and tissue regeneration. Nanocarriers Deliv. Combin. Drugs. (2021). https://doi.org/10.1016/B978-0-12-820779-6.00012-8

    Article  Google Scholar 

  8. M. Ullah, A. Wahab, D. Khan, S. Saeed, S.U. Khan, N. Ullah, T.A. Saleh, Modified gold and polymeric gold nanostructures: toxicology and biomedical applications. Colloids Interface Sci. Commun. (2021). https://doi.org/10.1016/j.colcom.2021.100412

    Article  Google Scholar 

  9. B.H.J. Gowda, S. Mohanto, A. Singh, A. Bhunia, M.A. Abdelgawad, S. Ghosh, M.J. Ansari, S. Pramanik, Nanoparticle-based therapeutic approaches for wound healing: a review of the state-of-the-art. Mater. Today Chem. 27, 101319 (2023). https://doi.org/10.1016/J.MTCHEM.2022.101319

    Article  CAS  Google Scholar 

  10. X. Zheng, X. Zhang, J. Zhao, W. Oyom, H. Long, R. Yang, L. Pu, Y. Bi, D. Prusky, Meyerozyma guilliermondii promoted the deposition of GSH type lignin by activating the biosynthesis and polymerization of monolignols at the wounds of potato tubers. Food. Chem. (2023). https://doi.org/10.1016/j.foodchem.2023.135688

    Article  PubMed  Google Scholar 

  11. G. Cheng, B. Li, Nanoparticle-based photodynamic therapy: new trends in wound healing applications. Mater. Today Adv. (2020). https://doi.org/10.1016/j.mtadv.2019.100049

    Article  Google Scholar 

  12. M. Fang, H. Zhang, Y. Wang, H. Zhang, D. Zhang, P. Xu, Biomimetic selenium nanosystems for infectious wound healing. Eng. Regener. 4, 152–160 (2023). https://doi.org/10.1016/j.engreg.2023.01.004

    Article  Google Scholar 

  13. A. Joorabloo, T. Liu, Engineering exosome-based biomimetic nanovehicles for wound healing. J. Control Release 356, 463–480 (2023). https://doi.org/10.1016/j.jconrel.2023.03.013

    Article  CAS  PubMed  Google Scholar 

  14. K. Rilla, A.M. Mustonen, U.T. Arasu, K. Härkönen, J. Matilainen, P. Nieminen, Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol. 75–76, 201–219 (2019). https://doi.org/10.1016/j.matbio.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  15. L. Filipović, M. Kojadinović, M. Popović, Exosomes and exosome-mimetics as targeted drug carriers: where we stand and what the future holds? J. Drug Deliv. Sci. Technol. (2022). https://doi.org/10.1016/j.jddst.2021.103057

    Article  Google Scholar 

  16. D. Ferreira, J.N. Moreira, L.R. Rodrigues, New advances in exosome-based targeted drug delivery systems, Crit Rev Oncol Hematol. 172 (2022). Doi: https://doi.org/10.1016/j.critrevonc.2022.103628.

  17. S. Fu, Y. Wang, X. Xia, J.C. Zheng, Exosome engineering: current progress in cargo loading and targeted delivery. NanoImpact (2020). https://doi.org/10.1016/j.impact.2020.100261

    Article  Google Scholar 

  18. M. Xiong, Q. Zhang, W. Hu, C. Zhao, W. Lv, Y. Yi, Y. Wang, H. Tang, M. Wu, Y. Wu, The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol. Res. (2021). https://doi.org/10.1016/j.phrs.2021.105490

    Article  PubMed  PubMed Central  Google Scholar 

  19. J. Aslam, S. Zehra, M. Mobin, M.A. Quraishi, C. Verma, R. Aslam, Metal/metal oxide-carbohydrate polymers framework for industrial and biological applications: current advancements and future directions. Carbohydr. Polym. (2023). https://doi.org/10.1016/J.CARBPOL.2023.120936

    Article  PubMed  Google Scholar 

  20. E. Zhang, P. Phan, Z. Zhao, Cellular nanovesicles for therapeutic immunomodulation: a perspective on engineering strategies and new advances. Acta Pharm. Sin. B (2022). https://doi.org/10.1016/j.apsb.2022.08.020

    Article  PubMed  PubMed Central  Google Scholar 

  21. E. Desideri, F. Ciccarone, M.R. Ciriolo, D. Fratantonio, Extracellular vesicles in endothelial cells: from mediators of cell-to-cell communication to cargo delivery tools. Free Radic. Biol. Med. 172, 508–520 (2021). https://doi.org/10.1016/j.freeradbiomed.2021.06.030

    Article  CAS  PubMed  Google Scholar 

  22. B.H.J. Gowda, S. Mohanto, A. Singh, A. Bhunia, M.A. Abdelgawad, S. Ghosh, M.J. Ansari, S. Pramanik, Nanoparticle-based therapeutic approaches for wound healing: a review of the state-of-the-art. Mater. Today Chem. (2023). https://doi.org/10.1016/j.mtchem.2022.101319

    Article  Google Scholar 

  23. M.H. Norahan, S.C. Pedroza-González, M.G. Sánchez-Salazar, M.M. Álvarez, G. Trujillo de Santiago, Structural and biological engineering of 3D hydrogels for wound healing. Bioact. Mater. 24, 197–235 (2023). https://doi.org/10.1016/j.bioactmat.2022.11.019

    Article  CAS  PubMed  Google Scholar 

  24. A. Awasthi, S. Vishwas, M. Gulati, L. Corrie, J. Kaur, R. Khursheed, A. Alam, F.F.A. Alkhayl, F.R. Khan, S. Nagarethinam, R. Kumar, K.R. Arya, B. Kumar, D.K. Chellappan, G. Gupta, K. Dua, S.K. Singh, Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: success so far and bottlenecks. J. Drug Deliv. Sci. Technol. (2022). https://doi.org/10.1016/j.jddst.2022.103534

    Article  Google Scholar 

  25. S. Roy, I. Hasan, B. Guo, Recent advances in nanoparticle-mediated antibacterial applications. Coord. Chem. Rev. (2023). https://doi.org/10.1016/j.ccr.2023.215075

    Article  Google Scholar 

  26. J. Zhou, D. Yao, Z. Qian, S. Hou, L. Li, A.T.A. Jenkins, Y. Fan, Bacteria-responsive intelligent wound dressing: simultaneous in situ detection and inhibition of bacterial infection for accelerated wound healing. Biomaterials 161, 11–23 (2018). https://doi.org/10.1016/j.biomaterials.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  27. M.S. Hassani, M. Salehi, A. Ehterami, S. Mahami, F.S. Bitaraf, M. Rahmati, Evaluation of collagen type I and III, TGF-β1, and VEGF gene expression in rat skin wound healing treated by Alginate/Chitosan hydrogel containing Crocetin. Biochem. Eng. J. (2023). https://doi.org/10.1016/j.bej.2023.108895

    Article  Google Scholar 

  28. L. Zhang, W. Tan, M. Zhang, Z. Ma, T. Zhao, Y. Zhang, Preparation and characterization of Panax notoginseng saponins loaded hyaluronic acid/carboxymethyl chitosan hydrogel for type o diabetic wound healing. Mater. Today Commun. (2023). https://doi.org/10.1016/j.mtcomm.2022.105284

    Article  Google Scholar 

  29. P. Sharma, S. Neogi, Performance-based design and manufacturing of filament wound Type-4 cylinders for compressed gas storage. Compos Struct. (2023). https://doi.org/10.1016/j.compstruct.2023.116710

    Article  Google Scholar 

  30. R.G. Frykberg, J. Banks, Challenges in the treatment of chronic wounds. Adv. Wound Care (New Rochelle). 4, 560–582 (2015). https://doi.org/10.1089/WOUND.2015.0635

    Article  PubMed  PubMed Central  Google Scholar 

  31. N. Harris, S. Fulchand, J. Nazaroff, S. Li, J.Y. Tang, 1517 Natural history of spontaneous wound healing in recessive dystrophic epidermolysis bullosa wound types using a mobile photography application. J. Investig. Dermatol. 143, S260 (2023). https://doi.org/10.1016/J.JID.2023.03.1534

    Article  Google Scholar 

  32. J.T. Patterson, J.A. Becerra, M. Brown, I. Roohani, C. Zalavras, J.N. Carey, Antibiotic bead pouch versus negative pressure wound therapy at initial management of AO/OTA 42 type IIIB open tibia fracture may reduce fracture related infection: a retrospective analysis of 113 patients. Injury 54, 744–750 (2023). https://doi.org/10.1016/j.injury.2022.12.018

    Article  PubMed  Google Scholar 

  33. A.K. Kar, A. Singh, D. Singh, N. Shraogi, R. Verma, J. Saji, P. Jagdale, D. Ghosh, S. Patnaik, Biopolymeric composite hydrogel loaded with silver NPs and epigallocatechin gallate (EGCG) effectively manages ROS for rapid wound healing in type II diabetic wounds. Int. J. Biol. Macromol. 218, 506–518 (2022). https://doi.org/10.1016/j.ijbiomac.2022.06.196

    Article  CAS  PubMed  Google Scholar 

  34. J.S. Low, K.K. Mak, S. Zhang, M.R. Pichika, P. Marappan, K. Mohandas, M.K. Balijepalli, In vitro methods used for discovering plant derived products as wound healing agents—an update on the cell types and rationale. Fitoterapia (2021). https://doi.org/10.1016/j.fitote.2021.105026

    Article  PubMed  Google Scholar 

  35. P. Li, B. Li, C. Wang, X. Zhao, Y. Zheng, S. Wu, J. Shen, Y. Zhang, X. Liu, In situ fabrication of co-coordinated TCPP-Cur donor-acceptor-type covalent organic framework-like photocatalytic hydrogel for rapid therapy of bacteria-infected wounds. Composite B (2023). https://doi.org/10.1016/j.compositesb.2023.110506

    Article  Google Scholar 

  36. D. Woodley, Y. Hou, X. Tang, C. Tan, K. Zhang, L. Bainvoll, W. Li, M. Chen, Topical type VII collagen increased elastic fiber formation, accelerated wound closure and reduced scarring of diabetic pigskin wounds. J. Investig. Dermatol. 143, 260 (2023). https://doi.org/10.1016/J.JID.2023.03.1536

    Article  Google Scholar 

  37. M.F. Hossain, Wound care: a material solution. Encyclopedia Renew. Sustain. Mater. (2020). https://doi.org/10.1016/B978-0-12-803581-8.10997-X

    Article  Google Scholar 

  38. R. Dong, B. Guo, Smart wound dressings for wound healing. Nano Today 41, 101290 (2021). https://doi.org/10.1016/j.nantod.2021.101290

    Article  CAS  Google Scholar 

  39. S. Talebian, M. Mehrali, N. Taebnia, C.P. Pennisi, F.B. Kadumudi, J. Foroughi, M. Hasany, M. Nikkhah, M. Akbari, G. Orive, A. Dolatshahi-Pirouz, Self-healing hydrogels: the next paradigm shift in tissue engineering? Adv. Sci. 6, 1801664 (2019). https://doi.org/10.1002/advs.201801664

    Article  CAS  Google Scholar 

  40. A.J. Clasky, J.D. Watchorn, P.Z. Chen, F.X. Gu, From prevention to diagnosis and treatment: biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater. 122, 1–25 (2021). https://doi.org/10.1016/j.actbio.2020.12.030

    Article  CAS  PubMed  Google Scholar 

  41. N. Fallah, M. Rasouli, M.R. Amini, The current and advanced therapeutic modalities for wound healing management. J. Diabetes Metab. Disord. 20, 1883–1899 (2021). https://doi.org/10.1007/s40200-021-00868-2

    Article  PubMed  PubMed Central  Google Scholar 

  42. L. Zhang, M. Liu, Y. Zhang, R. Pei, Recent progress of highly adhesive hydrogels as wound dressings. Biomacromolecules 21, 3966–3983 (2020). https://doi.org/10.1021/acs.biomac.0c01069

    Article  CAS  PubMed  Google Scholar 

  43. S. Pourshahrestani, E. Zeimaran, N.A. Kadri, N. Mutlu, A.R. Boccaccini, Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv. Healthcare Mater. 9, 2000905 (2020). https://doi.org/10.1002/adhm.202000905

    Article  CAS  Google Scholar 

  44. Z. Kopecki, Development of next-generation antimicrobial hydrogel dressing to combat burn wound infection. Biosci. Rep. (2021). 10.1042/BSR20203404.

  45. C. Pang, A. Ibrahim, N.W. Bulstrode, P. Ferretti, An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int. Wound J. 14, 450–459 (2017). https://doi.org/10.1111/iwj.12735

    Article  PubMed  PubMed Central  Google Scholar 

  46. A. Sood, M.S. Granick, N.L. Tomaselli, Wound dressings and comparative effectiveness data. Adv. Wound Care (New Rochelle). 3, 511–529 (2014). https://doi.org/10.1089/wound.2012.0401

    Article  PubMed  PubMed Central  Google Scholar 

  47. D.L. Steed, the D.U. Study Group *, Clinical evaluation of recombinant human platelet—derived growth factor for the treatment of lower extremity diabetic ulcers. J. Vasc. Surg. 21, 71–81 (1995). https://doi.org/10.1016/S0741-5214(95)70245-8.

  48. A. Przekora, A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro? Cells 9, 1622 (2020). https://doi.org/10.3390/cells9071622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M.A. Mofazzal Jahromi, P. Sahandi Zangabad, S.M. Moosavi Basri, K. Sahandi Zangabad, A. Ghamarypour, A.R. Aref, M. Karimi, M.R. Hamblin, Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev. 123, 33–64 (2018). https://doi.org/10.1016/j.addr.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  50. Q. Li, K. Liu, T. Jiang, S. Ren, Y. Kang, W. Li, H. Yao, X. Yang, H. Dai, Z. Chen, Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound healing. Mater. Sci. Eng. C 131, 112519 (2021). https://doi.org/10.1016/j.msec.2021.112519

    Article  CAS  Google Scholar 

  51. R. White, C. McIntosh, A review of the literature on topical therapies for diabetic foot ulcers. Part 2: advanced treatments. J. Wound Care 18, 335–341 (2009). https://doi.org/10.12968/jowc.2009.18.8.43633

    Article  CAS  PubMed  Google Scholar 

  52. R. Serra, A. Rizzuto, A. Rossi, P. Perri, A. Barbetta, K. Abdalla, S. Caroleo, C. Longo, B. Amantea, G. Sammarco, S. de Franciscis, Skin grafting for the treatment of chronic leg ulcers—a systematic review in evidence-based medicine. Int. Wound J. 14, 149–157 (2017). https://doi.org/10.1111/iwj.12575

    Article  PubMed  Google Scholar 

  53. D.K. Ozhathil, M.W. Tay, S.E. Wolf, L.K. Branski, A narrative review of the history of skin grafting in burn care. Medicina (B Aires). 57, 380 (2021). https://doi.org/10.3390/medicina57040380

    Article  Google Scholar 

  54. C. Dai, S. Shih, A. Khachemoune, Skin substitutes for acute and chronic wound healing: an updated review. J. Dermatol. Treat. 31, 639–648 (2020). https://doi.org/10.1080/09546634.2018.1530443

    Article  CAS  Google Scholar 

  55. E. Eriksson, P.Y. Liu, G.S. Schultz, M.M. Martins-Green, R. Tanaka, D. Weir, L.J. Gould, D.G. Armstrong, G.W. Gibbons, R. Wolcott, O.O. Olutoye, R.S. Kirsner, G.C. Gurtner, Chronic wounds: treatment consensus. Wound Repair Regen. 30, 156–171 (2022). https://doi.org/10.1111/wrr.12994

    Article  PubMed  PubMed Central  Google Scholar 

  56. S. Homaeigohar, A.R. Boccaccini, Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 107, 25–49 (2020). https://doi.org/10.1016/j.actbio.2020.02.022

    Article  CAS  PubMed  Google Scholar 

  57. M.M. Mihai, M.B. Dima, B. Dima, A.M. Holban, Nanomaterials for wound healing and infection control. Materials 12, 2176 (2019). https://doi.org/10.3390/ma12132176

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. N. Aminu, I. Bello, N.M. Umar, N. Tanko, A. Aminu, M.M. Audu, The influence of nanoparticulate drug delivery systems in drug therapy. J. Drug Deliv. Sci. Technol. 60, 101961 (2020). https://doi.org/10.1016/j.jddst.2020.101961

    Article  CAS  Google Scholar 

  59. J. Boateng, O. Catanzano, Silver and Silver Nanoparticle‐Based Antimicrobial Dressings, in: Therapeutic Dressings and Wound Healing Applications, Wiley, 2020: pp. 157–184. Doi: https://doi.org/10.1002/9781119433316.ch8.

  60. Stem Cells and Regenerative Medicine, Goodman’s Medical Cell Biology. (2021) 361–380. https://doi.org/10.1016/B978-0-12-817927-7.00013-2.

  61. Z. Xu, M. Dong, S. Yin, J. Dong, M. Zhang, R. Tian, W. Min, L. Zeng, H. Qiao, J. Chen, Why traditional herbal medicine promotes wound healing: research from immune response, wound microbiome to controlled delivery. Adv. Drug Deliv. Rev. (2023). https://doi.org/10.1016/j.addr.2023.114764

    Article  PubMed  Google Scholar 

  62. A. Joorabloo, T. Liu, Recent advances in nanomedicines for regulation of macrophages in wound healing. J. Nanobiotechnol. (2022). https://doi.org/10.1186/S12951-022-01616-1

    Article  Google Scholar 

  63. X. Li, X. Xie, W. Lian, R. Shi, S. Han, H. Zhang, L. Lu, M. Li, Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp. Mol. Med. 50, 1–14 (2018). https://doi.org/10.1038/s12276-018-0058-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Amini-Nik, Y. Yousuf, M.G. Jeschke, Scar management in burn injuries using drug delivery and molecular signaling: current treatments and future directions. Adv. Drug Deliv. Rev. 123, 135–154 (2018). https://doi.org/10.1016/j.addr.2017.07.017

    Article  CAS  PubMed  Google Scholar 

  65. L. Xie, X. Long, M. Mo, J. Jiang, Q. Zhang, M. Long, M. Li, Bone marrow mesenchymal stem cell-derived exosomes alleviate skin fibrosis in systemic sclerosis by inhibiting the IL-33/ST2 axis via the delivery of microRNA-214. Mol. Immunol. 157, 146–157 (2023). https://doi.org/10.1016/J.MOLIMM.2023.03.017

    Article  CAS  PubMed  Google Scholar 

  66. W. Pan, H. Chen, A. Wang, F. Wang, X. Zhang, Challenges and strategies: scalable and efficient production of mesenchymal stem cells-derived exosomes for cell-free therapy. Life Sci. 319, 121524 (2023). https://doi.org/10.1016/J.LFS.2023.121524

    Article  CAS  PubMed  Google Scholar 

  67. J. Li, X. Sun, J. Dai, J. Yang, L. Li, Z. Zhang, J. Guo, S. Bai, Y. Zheng, X. Shi, Biomimetic multifunctional hybrid sponge via enzymatic cross-linking to accelerate infected burn wound healing. Int. J. Biol. Macromol. 225, 90–102 (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.024

    Article  CAS  PubMed  Google Scholar 

  68. P.M. Wong, L. Yang, L. Yang, H. Wu, W. Li, X. Ma, I. Katayama, H. Zhang, New insight into the role of exosomes in vitiligo. Autoimmun. Rev. 19, 102664 (2020). https://doi.org/10.1016/J.AUTREV.2020.102664

    Article  CAS  PubMed  Google Scholar 

  69. J.S. Heo, S. Kim, C.E. Yang, Y. Choi, S.Y. Song, H.O. Kim, Human adipose mesenchymal stem cell-derived exosomes: a key player in wound healing, tissue eng. Regen. Med. 18, 537–548 (2021). https://doi.org/10.1007/S13770-020-00316-X/FIGURES/6

    Article  CAS  Google Scholar 

  70. B. Sridharan, H.G. Lim, Exosomes and ultrasound: The future of theranostic applications. Mater. Today Bio 19, 100556 (2023). https://doi.org/10.1016/J.MTBIO.2023.100556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. A.I. Toma, J.M. Fuller, N.J. Willett, S.L. Goudy, Oral wound healing models and emerging regenerative therapies. Transl. Res. 236, 17–34 (2021). https://doi.org/10.1016/J.TRSL.2021.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. C.K. Sen, Human wound and its burden: updated 2020 compendium of estimates. Adv. Wound Care (New Rochelle). 10, 281–292 (2021). https://doi.org/10.1089/WOUND.2021.0026

    Article  PubMed  PubMed Central  Google Scholar 

  73. T. Ma, B. Fu, X. Yang, Y. Xiao, M. Pan, Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J. Cell Biochem. 120, 10847–10854 (2019). https://doi.org/10.1002/JCB.28376

    Article  CAS  PubMed  Google Scholar 

  74. X. Zhou, B.A. Brown, A.P. Siegel, M.S. El Masry, X. Zeng, W. Song, A. Das, P. Khandelwal, A. Clark, K. Singh, P.R. Guda, M. Gorain, L. Timsina, Y. Xuan, S.C. Jacobson, M.V. Novotny, S. Roy, M. Agarwal, R.J. Lee, C.K. Sen, D.E. Clemmer, S. Ghatak, Exosome-mediated crosstalk between keratinocytes and macrophages in cutaneous wound healing. ACS Nano 14, 12732–12748 (2020). https://doi.org/10.1021/acsnano.0c03064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. I.K. Herrmann, M.J.A. Wood, G. Fuhrmann, Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021). https://doi.org/10.1038/s41565-021-00931-2

    Article  CAS  PubMed  ADS  Google Scholar 

  76. E. Issaka, J.N.O. Amu-Darko, M. Adams, S. Yakubu, E. Gyimah, N. Ali, J. Cui, M. Bilal, Zinc imidazolate metal-organic frameworks-8-encapsulated enzymes/nanoenzymes for biocatalytic and biomedical applications. Catal. Lett. (2022). https://doi.org/10.1007/s10562-022-04140-x

    Article  Google Scholar 

  77. E. Issaka, S. Yakubu, H. Sulemana, A. Kerkula, O. Nyame-do Aniagyei, Current status of the direct detection of MPs in environments and implications for toxicology effects. Chem. Eng. J. Adv. (2023). https://doi.org/10.1016/j.ceja.2023.100449

    Article  Google Scholar 

  78. E. Issaka, M.A. Wariboko, N.A.N. Johnson, O.N. Aniagyei, Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon (2023). https://doi.org/10.1016/j.heliyon.2023.e13986

    Article  PubMed  PubMed Central  Google Scholar 

  79. R. Misra, S. Acharya, N. Sushmitha, Nanobiosensor-based diagnostic tools in viral infections: special emphasis on Covid-19. Rev. Med. Virol. (2022). https://doi.org/10.1002/rmv.2267

    Article  PubMed  Google Scholar 

  80. Z. Tu, M. Chen, M. Wang, Z. Shao, X. Jiang, K. Wang, Z. Yao, S. Yang, X. Zhang, W. Gao, C. Lin, B. Lei, C. Mao, Engineering bioactive M2 macrophage-polarized anti-inflammatory, antioxidant, and antibacterial scaffolds for rapid angiogenesis and diabetic wound repair. Adv. Funct. Mater. 31, 2100924 (2021). https://doi.org/10.1002/adfm.202100924

    Article  CAS  Google Scholar 

  81. Z. Xu, B. Liang, J. Tian, J. Wu, Anti-inflammation biomaterial platforms for chronic wound healing. Biomater. Sci. 9, 4388–4409 (2021). https://doi.org/10.1039/D1BM00637A

    Article  CAS  PubMed  Google Scholar 

  82. Y. Yuan, D. Fan, S. Shen, X. Ma, An M2 macrophage-polarized anti-inflammatory hydrogel combined with mild heat stimulation for regulating chronic inflammation and impaired angiogenesis of diabetic wounds. Chem. Eng. J. 433, 133859 (2022). https://doi.org/10.1016/j.cej.2021.133859

    Article  CAS  Google Scholar 

  83. S. Sharifi, M.J. Hajipour, L. Gould, M. Mahmoudi, Nanomedicine in healing chronic wounds: opportunities and challenges. Mol. Pharm. 18, 550–575 (2021). https://doi.org/10.1021/acs.molpharmaceut.0c00346

    Article  CAS  PubMed  Google Scholar 

  84. Y. Xi, J. Ge, M. Wang, M. Chen, W. Niu, W. Cheng, Y. Xue, C. Lin, B. Lei, Bioactive Anti-inflammatory, antibacterial, antioxidative silicon-based nanofibrous dressing enables cutaneous tumor photothermo-chemo therapy and infection-induced wound healing. ACS Nano 14, 2904–2916 (2020). https://doi.org/10.1021/acsnano.9b07173

    Article  CAS  PubMed  Google Scholar 

  85. W. Li, J. Cao, Y. Du, H. Ye, W. Shan, X. Chen, H. Wu, G. Krishna Murakonda, X. Xu, Ampelopsis grossedentata leaf extract induced gold nanoparticles as wound healing dressing for abdominal wound dehiscence in nursing care. J. Clust. Sci. 33, 1139–1147 (2022). https://doi.org/10.1007/s10876-021-02040-5

    Article  CAS  Google Scholar 

  86. N.T.T. Thao, H.M.S.M. Wijerathna, R.S. Kumar, D. Choi, S.H.S. Dananjaya, A.P. Attanayake, Preparation and characterization of succinyl chitosan and succinyl chitosan nanoparticle film: in vitro and in vivo evaluation of wound healing activity. Int. J. Biol. Macromol. 193, 1823–1834 (2021). https://doi.org/10.1016/J.IJBIOMAC.2021.11.015

    Article  CAS  PubMed  Google Scholar 

  87. C. Carbone, C. Caddeo, M.A. Grimaudo, D.E. Manno, A. Serra, T. Musumeci, Ferulic acid-NLC with Lavandula essential oil: a possible strategy for wound-healing? Nanomaterials 10, 898 (2020). https://doi.org/10.3390/nano10050898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. R. Augustine, A.A. Zahid, A. Hasan, Y.B. Dalvi, J. Jacob, Cerium oxide nanoparticle-loaded gelatin methacryloyl hydrogel wound-healing patch with free radical scavenging activity. ACS Biomater. Sci. Eng. 7, 279–290 (2021). https://doi.org/10.1021/acsbiomaterials.0c01138

    Article  CAS  PubMed  Google Scholar 

  89. S.B. Balakrishnan, M. Alam, N. Ahmad, M. Govindasamy, S. Kuppu, S. Thambusamy, Electrospinning nanofibrous graft preparation and wound healing studies using ZnO nanoparticles and glucosamine loaded with poly(methyl methacrylate)/polyethylene glycol. New J. Chem. 45, 7987–7998 (2021). https://doi.org/10.1039/D0NJ05409G

    Article  CAS  Google Scholar 

  90. T. Wang, J. Wang, R. Wang, P. Yuan, Z. Fan, S. Yang, Preparation and properties of ZnO/sodium alginate bi-layered hydrogel films as novel wound dressings. New J. Chem. 43, 8684–8693 (2019). https://doi.org/10.1039/C9NJ00402E

    Article  CAS  Google Scholar 

  91. S. Rathinavel, K. Priyadharshini, D. Panda, A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 268, 115095 (2021). https://doi.org/10.1016/J.MSEB.2021.115095

    Article  CAS  Google Scholar 

  92. B. Murugesan, N. Pandiyan, K. Kasinathan, A. Rajaiah, M. Arumuga, P. Subramanian, J. Sonamuthu, S. Samayanan, V.R. Arumugam, K. Marimuthu, C. Yurong, S. Mahalingam, Fabrication of heteroatom doped NFP-MWCNT and NFB-MWCNT nanocomposite from imidazolium ionic liquid functionalized MWCNT for antibiofilm and wound healing in Wistar rats: synthesis, characterization, in-vitro and in-vivo studies. Mater. Sci. Eng. C 111, 110791 (2020). https://doi.org/10.1016/J.MSEC.2020.110791

    Article  CAS  Google Scholar 

  93. O. Forero-Doria, E. Polo, A. Marican, L. Guzmán, B. Venegas, S. Vijayakumar, S. Wehinger, M. Guerrero, J. Gallego, E.F. Durán-Lara, Supramolecular hydrogels based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties. Carbohydr. Polym. 242, 116383 (2020). https://doi.org/10.1016/J.CARBPOL.2020.116383

    Article  CAS  PubMed  Google Scholar 

  94. E. Hafez, S.M. Shaban, M.H. Kim, A.Y. Elbalaawy, D. gi Pyun, D.H. Kim, Fabrication of activated carbon fiber functionalized core–shell silver nanoparticles based in situ and low-cost technology for wound dressings with an enhanced antimicrobial activity and cell viability. J. Mol. Liq. (2022). https://doi.org/10.1016/j.molliq.2022.119561

    Article  Google Scholar 

  95. E. Naseri, A. Ahmadi, A review on wound dressings: antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur. Polym. J. (2022). https://doi.org/10.1016/j.eurpolymj.2022.111293

    Article  Google Scholar 

  96. L. Li, D. Chen, J. Chen, C. Yang, Y. Zeng, T. Jin, Y. Zhang, X. Sun, H. Mao, Z. Mu, X. Shen, Z. Ruan, X. Cai, Gelatin and catechol-modified quaternary chitosan confer cotton dressings with rapid hemostasis and high-efficiency antimicrobial capacities to manage severe bleeding wounds. Mater. Des. 229, 111927 (2023). https://doi.org/10.1016/J.MATDES.2023.111927

    Article  CAS  Google Scholar 

  97. T.K. Kumawat, V. Kumawat, V. Sharma, A. Pandit, B. Sharma, S. Nag, N. Kumari, M. Biyani, Overview and summary of antimicrobial wound dressings and its biomedical applications. Antimicrob. Dress. (2023). https://doi.org/10.1016/B978-0-323-95074-9.00004-X

    Article  Google Scholar 

  98. J.A. Ross, N. Allan, M. Olson, C. Schatz, P.N. Nation, J.P. Gawaziuk, J. Sethi, S. Liu, S. Logsetty, Comparison of the efficacy of silver-based antimicrobial burn dressings in a porcine model of burn wounds. Burns 46, 1632–1640 (2020). https://doi.org/10.1016/j.burns.2020.04.004

    Article  PubMed  Google Scholar 

  99. R.S. Khan, A.H. Rather, T.U. Wani, S. ullah Rather, A. Abdal-hay, F.A. Sheikh, A comparative review on silk fibroin nanofibers encasing the silver nanoparticles as antimicrobial agents for wound healing applications. Mater. Today Commun. (2022). https://doi.org/10.1016/j.mtcomm.2022.103914

    Article  Google Scholar 

  100. X. Chen, H. Li, X. Qiao, T. Jiang, X. Fu, Y. He, X. Zhao, Agarose oligosaccharide-silver nanoparticle-antimicrobial peptide-composite for wound dressing. Carbohydr. Polym. 269, 118258 (2021). https://doi.org/10.1016/J.CARBPOL.2021.118258

    Article  CAS  PubMed  Google Scholar 

  101. V. Edwards-Jones, In vitro studies of a silver surgical site dressing, PrimasealTM post-op silver dressing, and its activity against common wound pathogens. Int. J. Surg. Open 36, 100410 (2021). https://doi.org/10.1016/J.IJSO.2021.100410

    Article  Google Scholar 

  102. K. Shanmugapriya, H.W. Kang, Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: review. Mater. Sci. Eng. C (2019). https://doi.org/10.1016/j.msec.2019.110110

    Article  Google Scholar 

  103. V. Vijayakumar, S.K. Samal, S. Mohanty, S.K. Nayak, Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int. J. Biol. Macromol. 122, 137–148 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.120

    Article  CAS  PubMed  Google Scholar 

  104. S. Wilk, A. Przekora, P. Kazimierczak, D. Medina-Cruz, L. Martínez, C. O’Connell, L.B. Truong, K. Reczyńska-Kolman, H. Barabadi, J.L. Cholula-Diaz, E. Pamuła, Y. Huttel, J.M. García-Martín, T.J. Webster, A. Benko, Nanocomposite scaffolds and coatings for wound healing and infection control. Antimicrob. Activity Nanoparticles (2022). https://doi.org/10.1016/B978-0-12-821637-8.00007-9

    Article  Google Scholar 

  105. L. Zheng, B. Gu, S. Li, B. Luo, Y. Wen, M. Chen, X. Li, Z. Zha, H.T. Zhang, X. Wang, An antibacterial hemostatic AuNPs@corn stalk/chitin composite sponge with shape recovery for promoting wound healing. Carbohydr. Polym. 296, 119924 (2022). https://doi.org/10.1016/J.CARBPOL.2022.119924

    Article  CAS  PubMed  Google Scholar 

  106. A.A. Menazea, M.K. Ahmed, Wound healing activity of Chitosan/polyvinyl alcohol embedded by gold nanoparticles prepared by nanosecond laser ablation. J. Mol. Struct. 1217, 128401 (2020). https://doi.org/10.1016/J.MOLSTRUC.2020.128401

    Article  CAS  Google Scholar 

  107. A.L. Wani, G.G. Hammad Ahmad Shadab, M. Afzal, Lead and zinc interactions—an influence of zinc over lead related toxic manifestations. J. Trace Elem. Med. Biol. (2021). https://doi.org/10.1016/j.jtemb.2020.126702

    Article  PubMed  Google Scholar 

  108. S. Awasthi, R. Chauhan, S. Srivastava, The importance of beneficial and essential trace and ultratrace elements in plant nutrition, growth, and stress tolerance. Plant Nutr. Food Secur. Era Clim. Chang. (2021). https://doi.org/10.1016/B978-0-12-822916-3.00001-9

    Article  Google Scholar 

  109. V. Dhiman, N. Kondal, ZnO Nanoadsorbents: a potent material for removal of heavy metal ions from wastewater. Colloids Interface Sci. Commun. (2021). https://doi.org/10.1016/j.colcom.2021.100380

    Article  Google Scholar 

  110. R.G. Saratale, I. Karuppusamy, G.D. Saratale, A. Pugazhendhi, G. Kumar, Y. Park, G.S. Ghodake, R.N. Bharagava, J.R. Banu, H.S. Shin, A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications. Colloids Surf. B 170, 20–35 (2018). https://doi.org/10.1016/j.colsurfb.2018.05.045

    Article  CAS  Google Scholar 

  111. L. Ye, X. He, E. Obeng, D. Wang, D. Zheng, T. Shen, J. Shen, R. Hu, H. Deng, The CuO and AgO co-modified ZnO nanocomposites for promoting wound healing in Staphylococcus aureus infection. Mater. Today Bio. 18, 100552 (2023). https://doi.org/10.1016/J.MTBIO.2023.100552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Z.B. Akkuş-Dağdeviren, A. Fürst, J. David Friedl, M. Tribus, A. Bernkop-Schnürch, Nanoarchitectonics of layer-by-layer (LbL) coated nanostructured lipid carriers (NLCs) for enzyme-triggered charge reversal. J. Colloid Interface Sci. 629, 541–553 (2023). https://doi.org/10.1016/j.jcis.2022.08.190

    Article  CAS  PubMed  ADS  Google Scholar 

  113. P. Graván, A. Aguilera-Garrido, J.A. Marchal, S.A. Navarro-Marchal, F. Galisteo-González, Lipid-core nanoparticles: classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv. Colloid Interface Sci. (2023). https://doi.org/10.1016/j.cis.2023.102871

    Article  PubMed  Google Scholar 

  114. C. Tapeinos, M. Battaglini, G. Ciofani, Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control Release 264, 306–332 (2017). https://doi.org/10.1016/j.jconrel.2017.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. S. Aziz Hazari, H. Kaur, R. Karwasra, M.A.S. Abourehab, A. Ali Khan, P. Kesharwani, An overview of topical lipid-based and polymer-based nanocarriers for treatment of psoriasis. Int. J. Pharm. (2023). https://doi.org/10.1016/j.ijpharm.2023.122938

    Article  PubMed  Google Scholar 

  116. H. Nsairat, D. Khater, F. Odeh, F. Al-Adaileh, S. Al-Taher, A.M. Jaber, W. Alshaer, A. Al Bawa, M.S. Mubarak, Lipid nanostructures for targeting brain cancer. Heliyon (2021). https://doi.org/10.1016/j.heliyon.2021.e07994

    Article  PubMed  PubMed Central  Google Scholar 

  117. W. Zha, J. Wang, Z. Guo, Y. Zhang, Y. Wang, S. Dong, C. Liu, H. Xing, X. Li, Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles. Int. J. Pharm. 632, 122565 (2023). https://doi.org/10.1016/J.IJPHARM.2022.122565

    Article  CAS  PubMed  Google Scholar 

  118. B. Carletto, A.Y. Koga, A. Novatski, R.M. Mainardes, L.C. Lipinski, P.V. Farago, Ursolic acid-loaded lipid-core nanocapsules reduce damage caused by estrogen deficiency in wound healing. Colloids Surf. B 203, 720 (2021). https://doi.org/10.1016/J.COLSURFB.2021.111720

    Article  Google Scholar 

  119. V. Pils, L. Terlecki-Zaniewicz, M. Schosserer, J. Grillari, I. Lämmermann, The role of lipid-based signalling in wound healing and senescence. Mech. Ageing Dev. 198, 111527 (2021). https://doi.org/10.1016/J.MAD.2021.111527

    Article  CAS  PubMed  Google Scholar 

  120. H.S. Kim, X. Sun, J.-H. Lee, H.-W. Kim, X. Fu, K.W. Leong, Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv. Drug Deliv. Rev. 146, 209–239 (2019). https://doi.org/10.1016/j.addr.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  121. S. Saghazadeh, C. Rinoldi, M. Schot, S.S. Kashaf, F. Sharifi, E. Jalilian, K. Nuutila, G. Giatsidis, P. Mostafalu, H. Derakhshandeh, K. Yue, W. Swieszkowski, A. Memic, A. Tamayol, A. Khademhosseini, Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 127, 138–166 (2018). https://doi.org/10.1016/j.addr.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Y. Liang, M. Li, Y. Yang, L. Qiao, H. Xu, B. Guo, pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano 16, 3194–3207 (2022). https://doi.org/10.1021/acsnano.1c11040

    Article  CAS  PubMed  Google Scholar 

  123. F. Yan, F. Cheng, C. Guo, G. Liang, S. Zhang, S. Fang, Z. Zhang, Curcumin-regulated constructing of defective zinc-based polymer-metal-organic framework as long-acting antibacterial platform for efficient wound healing. J. Colloid Interface Sci. 641, 59–69 (2023). https://doi.org/10.1016/j.jcis.2023.03.050

    Article  CAS  PubMed  ADS  Google Scholar 

  124. Y. Lu, P. Shan, W. Lu, X. Yin, H. Liu, X. Lian, J. Jin, Y. Qi, Z. Li, Z. Li, ROS-responsive and self-amplifying polymeric prodrug for accelerating infected wound healing. Chem. Eng. J. 463, 2311 (2023). https://doi.org/10.1016/j.cej.2023.142311

    Article  CAS  Google Scholar 

  125. J. Huang, S. Wang, X. Wang, J. Zhu, Z. Wang, X. Zhang, K. Cai, J. Zhang, Combination wound healing using polymer entangled porous nanoadhesive hybrids with robust ROS scavenging and angiogenesis properties. Acta Biomater. 152, 171–185 (2022). https://doi.org/10.1016/j.actbio.2022.08.069

    Article  CAS  PubMed  Google Scholar 

  126. Y. Zhang, Y. Pan, Y. Liu, X. Li, L. Tang, M. Duan, J. Li, G. Zhang, Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res. Ther. 12, 434 (2021). https://doi.org/10.1186/s13287-021-02517-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. D.H. Hoang, T.D. Nguyen, H.-P. Nguyen, X.-H. Nguyen, P.T.X. Do, V.D. Dang, P.T.M. Dam, H.T.H. Bui, M.Q. Trinh, D.M. Vu, N.T.M. Hoang, L.N. Thanh, U.T.T. Than, Differential wound healing capacity of mesenchymal stem cell-derived exosomes originated from bone marrow, adipose tissue and umbilical cord under serum- and xeno-free condition. Front. Mol. Biosci. (2020). https://doi.org/10.3389/fmolb.2020.00119

    Article  PubMed  PubMed Central  Google Scholar 

  128. H. Haidari, R. Bright, X.L. Strudwick, S. Garg, K. Vasilev, A.J. Cowin, Z. Kopecki, Multifunctional ultrasmall AgNP hydrogel accelerates healing of S. aureus infected wounds. Acta Biomater. 128, 420–434 (2021). https://doi.org/10.1016/J.ACTBIO.2021.04.007

    Article  CAS  PubMed  Google Scholar 

  129. L. Jaiswal, S. Shankar, J.W. Rhim, D.H. Hahm, Lignin-mediated green synthesis of AgNPs in carrageenan matrix for wound dressing applications. Int. J. Biol. Macromol. 159, 859–869 (2020). https://doi.org/10.1016/J.IJBIOMAC.2020.05.145

    Article  CAS  PubMed  Google Scholar 

  130. Y. Zou, R. Xie, E. Hu, P. Qian, B. Lu, G. Lan, F. Lu, Protein-reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug-resistant bacteria. Int. J. Biol. Macromol. 148, 921–931 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.190

    Article  CAS  PubMed  Google Scholar 

  131. L. Sturm, M. Flood, A. Montoya, L. Mody, M. Cassone, Updates on infection control in alternative health care settings. Infect. Dis. Clin. N. Am. 35, 803–825 (2021). https://doi.org/10.1016/j.idc.2021.04.013

    Article  Google Scholar 

  132. F.U. Khan, S. Shah, G. Abbas, H.U. Khan, T. Ahmad, W. Ullah, A. Khan, F. UllahKhan, T.H. Mallhi, Y.H. Khan, Y. Fang, Antibiotics safety case studies: hospitals. Clin. Case Stud. Med. Saf. (2023). https://doi.org/10.1016/B978-0-323-98802-5.00003-0

    Article  Google Scholar 

  133. M. Bassetti, M. Baguneid, E. Bouza, M. Dryden, D. Nathwani, M. Wilcox, European perspective and update on the management of complicated skin and soft tissue infections due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin. Microbiol. Infect. 20, 3–18 (2014). https://doi.org/10.1111/1469-0691.12463

    Article  CAS  PubMed  Google Scholar 

  134. S.A. Alsakhawy, H.H. Baghdadi, M.A. El-Shenawy, S.A. Sabra, L.S. El-Hosseiny, Encapsulation of thymus vulgaris essential oil in caseinate/gelatin nanocomposite hydrogel: in vitro antibacterial activity and in vivo wound healing potential. Int. J. Pharm. (2022). https://doi.org/10.1016/j.ijpharm.2022.122280

    Article  PubMed  Google Scholar 

  135. A.G. Tabriz, D. Douroumis, Recent advances in 3D printing for wound healing: a systematic review. J. Drug Deliv. Sci. Technol. (2022). https://doi.org/10.1016/j.jddst.2022.103564

    Article  Google Scholar 

  136. F. Mushtaq, Z.A. Raza, S.R. Batool, M. Zahid, O.C. Onder, A. Rafique, M.A. Nazeer, Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int. J. Biol. Macromol. 218, 601–633 (2022). https://doi.org/10.1016/j.ijbiomac.2022.07.168

    Article  CAS  PubMed  Google Scholar 

  137. N.J. Buote, Updates in wound management and dressings, veterinary clinics of North America—small animal. Practice 52, 289–315 (2022). https://doi.org/10.1016/j.cvsm.2021.12.001

    Article  Google Scholar 

  138. S.A. Shah, M. Sohail, S.A. Khan, M. Kousar, Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. Mater. Sci. Eng. C (2021). https://doi.org/10.1016/j.msec.2021.112169

    Article  Google Scholar 

  139. M. Gruppuso, G. Turco, E. Marsich, D. Porrelli, Polymeric wound dressings, an insight into polysaccharide-based electrospun membranes. Appl. Mater. Today (2021). https://doi.org/10.1016/j.apmt.2021.101148

    Article  Google Scholar 

  140. S. Hasan, M.A. Hasan, M.U. Hassan, M. Amin, T. Javed, L. Fatima, Biopolymers in diabetic wound care management: a potential substitute to traditional dressings. Eur. Polym. J. (2023). https://doi.org/10.1016/j.eurpolymj.2023.111979

    Article  Google Scholar 

  141. B.I. Oladapo, S.A. Zahedi, S.O. Ismail, D.B. Olawade, Recent advances in biopolymeric composite materials: future sustainability of bone-implant. Renew. Sustain. Energy Rev. 150, 505 (2021). https://doi.org/10.1016/j.rser.2021.111505

    Article  CAS  Google Scholar 

  142. N.G. Fischer, C. Aparicio, Junctional epithelium and hemidesmosomes: tape and rivets for solving the “percutaneous device dilemma” in dental and other permanent implants. Bioact Mater. 18, 178–198 (2022). https://doi.org/10.1016/j.bioactmat.2022.03.019

    Article  PubMed  PubMed Central  Google Scholar 

  143. Y. Li, Y. Xiao, C. Liu, The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem. Rev. 117, 4376–4421 (2017). https://doi.org/10.1021/acs.chemrev.6b00654

    Article  CAS  PubMed  Google Scholar 

  144. N. Khosravi, R.S. Da Costa, J.E. Davies, New insights into spatio-temporal dynamics of mesenchymal progenitor cell ingress during peri-implant wound healing: Provided by intravital imaging. Biomaterials 273, 120837 (2021). https://doi.org/10.1016/j.biomaterials.2021.120837

    Article  CAS  PubMed  Google Scholar 

  145. S.A. Shah, M. Sohail, M. Karperien, C. Johnbosco, A. Mahmood, M. Kousar, Chitosan and carboxymethyl cellulose-based 3D multifunctional bioactive hydrogels loaded with nano-curcumin for synergistic diabetic wound repair. Int. J. Biol. Macromol. 227, 1203–1220 (2023). https://doi.org/10.1016/j.ijbiomac.2022.11.307

    Article  CAS  PubMed  Google Scholar 

  146. S.A. Shah, M. Sohail, S.A. Khan, M. Kousar, Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. Mater. Sci. Eng. C 126, 112169 (2021). https://doi.org/10.1016/J.MSEC.2021.112169

    Article  CAS  Google Scholar 

  147. A. da F. Ferreira, P. da S. Cunha, V.M. Carregal, P. de C. da Silva, M.C. de Miranda, M. Kunrath-Lima, M.I.A. de Melo, C.C.F. Faraco, J.L. Barbosa, F. Frezard, V. Resende, M.A. Rodrigues, A.M. de Goes, D.A. Gomes, Extracellular Vesicles from Adipose-Derived Mesenchymal Stem/Stromal Cells Accelerate Migration and Activate AKT Pathway in Human Keratinocytes and Fibroblasts Independently of miR-205 Activity, Stem Cells Int. 2017, 1–14 (2017). https://doi.org/10.1155/2017/9841035.

  148. J. Ding, X. Wang, B. Chen, J. Zhang, J. Xu, Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. Biomed. Res. Int. 2019, 1–12 (2019). https://doi.org/10.1155/2019/9742765

    Article  CAS  Google Scholar 

  149. D.R. Cooper, C. Wang, R. Patel, A. Trujillo, N.A. Patel, J. Prather, L.J. Gould, M.H. Wu, Human adipose-derived stem cell conditioned media and exosomes containing MALAT1 promote human dermal fibroblast migration and ischemic wound healing. Adv. Wound Care (New Rochelle). 7, 299–308 (2018). https://doi.org/10.1089/wound.2017.0775

    Article  PubMed  PubMed Central  Google Scholar 

  150. G. Pelizzo, M.A. Avanzini, A. Icaro Cornaglia, A. De Silvestri, M. Mantelli, P. Travaglino, S. Croce, P. Romano, L. Avolio, G. Iacob, M. Dominici, V. Calcaterra, Extracellular vesicles derived from mesenchymal cells: perspective treatment for cutaneous wound healing in pediatrics. Regen. Med. 13, 385–394 (2018). https://doi.org/10.2217/rme-2018-0001

    Article  CAS  PubMed  Google Scholar 

  151. D. Ismail, A. Aboulkhair, Histological evaluation of the emerging role of adipose stem cells-derived exosomes in cutaneous wound healing in Albino rats, Egyptian. J. Histol. 41, 459–472 (2018). https://doi.org/10.21608/ejh.2018.4507.1015

    Article  Google Scholar 

  152. B. Zhang, X. Wu, X. Zhang, Y. Sun, Y. Yan, H. Shi, Y. Zhu, L. Wu, Z. Pan, W. Zhu, H. Qian, W. Xu, Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl. Med. 4, 513–522 (2015). https://doi.org/10.5966/sctm.2014-0267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. L. Hu, J. Wang, X. Zhou, Z. Xiong, J. Zhao, R. Yu, F. Huang, H. Zhang, L. Chen, Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep. 6, 32993 (2016). https://doi.org/10.1038/srep32993

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  154. Q. Shi, Z. Qian, D. Liu, J. Sun, X. Wang, H. Liu, J. Xu, X. Guo, GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front. Physiol. (2017). https://doi.org/10.3389/fphys.2017.00904

    Article  PubMed  PubMed Central  Google Scholar 

  155. S.-C. Tao, S.-C. Guo, M. Li, Q.-F. Ke, Y.-P. Guo, C.-Q. Zhang, Chitosan wound dressings incorporating exosomes derived from microRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl. Med. 6, 736–747 (2017). https://doi.org/10.5966/sctm.2016-0275

    Article  CAS  PubMed  Google Scholar 

  156. L. Wang, L. Hu, X. Zhou, Z. Xiong, C. Zhang, H.M.A. Shehada, B. Hu, J. Song, L. Chen, Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci. Rep. 7, 13321 (2017). https://doi.org/10.1038/s41598-017-12919-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  157. R. Dalirfardouei, K. Jamialahmadi, A.H. Jafarian, E. Mahdipour, Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J. Tissue Eng. Regen. Med. 13, 555–568 (2019). https://doi.org/10.1002/term.2799

    Article  CAS  PubMed  Google Scholar 

  158. D. Ti, H. Hao, C. Tong, J. Liu, L. Dong, J. Zheng, Y. Zhao, H. Liu, X. Fu, W. Han, LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J. Transl. Med. 13, 308 (2015). https://doi.org/10.1186/s12967-015-0642-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. C. Li, Y. An, Y. Sun, F. Yang, Q. Xu, Z. Wang, Adipose mesenchymal stem cell-derived exosomes promote wound healing through the WNT/β-catenin signaling pathway in dermal fibroblasts. Stem Cell Rev. Rep. 18, 2059–2073 (2022). https://doi.org/10.1007/s12015-022-10378-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. A. Shabbir, A. Cox, L. Rodriguez-Menocal, M. Salgado, E. Van Badiavas, Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 24, 1635–1647 (2015). https://doi.org/10.1089/scd.2014.0316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Y.J. Kim, S. mi Yoo, H.H. Park, H.J. Lim, Y.L. Kim, S. Lee, K.W. Seo, K.S. Kang, Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem Biophys Res Commun. 493, 1102–1108 (2017). https://doi.org/10.1016/J.BBRC.2017.09.056

    Article  CAS  PubMed  Google Scholar 

  162. Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 556, 514–528 (2019). https://doi.org/10.1016/J.JCIS.2019.08.083

    Article  CAS  PubMed  ADS  Google Scholar 

  163. P. Ehsani, M.R. Farahpour, M. Mohammadi, S. Mahmazi, S. Jafarirad, Green fabrication of ZnO/magnetite-based nanocomposite - using Salvia officinalis extract with antibacterial properties enhanced infected full-thickness wound. Colloids Surf. A 628, 127362 (2021). https://doi.org/10.1016/j.colsurfa.2021.127362

    Article  CAS  Google Scholar 

  164. R. Augustine, A. Hasan, N.K. Patan, Y.B. Dalvi, R. Varghese, A. Antony, R.N. Unni, N. Sandhyarani, A.-E. Al Moustafa, Cerium oxide nanoparticle incorporated electrospun poly(3-hydroxybutyrate- co-3-hydroxyvalerate) membranes for diabetic wound healing applications. ACS Biomater. Sci. Eng. 6, 58–70 (2020). https://doi.org/10.1021/acsbiomaterials.8b01352

    Article  CAS  PubMed  Google Scholar 

  165. V.T. Arantes, A.A.G. Faraco, F.B. Ferreira, C.A. Oliveira, E. Martins-Santos, P. Cassini-Vieira, L.S. Barcelos, L.A.M. Ferreira, G.A.C. Goulart, Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study. Colloids Surf. B 188, 110749 (2020). https://doi.org/10.1016/j.colsurfb.2019.110749

    Article  CAS  Google Scholar 

  166. K. Khezri, M.R. Farahpour, S. Mounesi Rad, Efficacy of Mentha pulegium essential oil encapsulated into nanostructured lipid carriers as an in vitro antibacterial and infected wound healing agent. Colloids Surf. A 589, 124414 (2020). https://doi.org/10.1016/j.colsurfa.2020.124414

    Article  CAS  Google Scholar 

  167. J. Pires, S.T. Cargnin, S.A. Costa, V.D.G. Sinhorin, A.S. Damazo, A.P. Sinhorin, de R.C. Bicudo, L. Cavalheiro, de D.M.S. Valladão, A.R. Pohlmann, S.S. Guterres, S.R. Ferrarini, Healing of dermal wounds property of Caryocar brasiliense oil loaded polymeric lipid-core nanocapsules: formulation and in vivo evaluation. European Journal of Pharmaceutical Sciences. 150 (2020) 5356. Doi: https://doi.org/10.1016/j.ejps.2020.105356.

  168. M. Liu, W. Chen, X. Zhang, P. Su, F. Yue, S. Zeng, S. Du, Improved surface adhesion and wound healing effect of madecassoside liposomes modified by temperature-responsive PEG-PCL-PEG copolymers. Eur. J. Pharm. Sci. 151, 105373 (2020). https://doi.org/10.1016/j.ejps.2020.105373

    Article  CAS  PubMed  Google Scholar 

  169. M. Tiboni, S. Coppari, L. Casettari, M. Guescini, M. Colomba, D. Fraternale, A. Gorassini, G. Verardo, S. Ramakrishna, L. Guidi, B. Di Giacomo, M. Mari, R. Molinaro, M.C. Albertini, Prunus spinosa extract loaded in biomimetic nanoparticles evokes in vitro anti-inflammatory and wound healing activities. Nanomaterials 11, 36 (2020). https://doi.org/10.3390/nano11010036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. L.N. Kasiewicz, K.A. Whitehead, Lipid nanoparticles silence tumour necrosis factor α to improve wound healing in diabetic mice. Bioeng. Transl. Med. 4, 75–82 (2019). https://doi.org/10.1002/btm2.10123

    Article  CAS  PubMed  Google Scholar 

  171. V. Laghezza Masci, A. Taddei, T. Courant, O. Tezgel, F. Navarro, F. Giorgi, D. Mariolle, A. Fausto, I. Texier, Characterization of collagen/lipid nanoparticle-curcumin cryostructurates for wound healing applications. Macromol. Biosci. 19, 1800446 (2019). https://doi.org/10.1002/mabi.201800446

    Article  CAS  Google Scholar 

  172. Y. Fu, J. Zhang, Y. Wang, J. Li, J. Bao, X. Xu, C. Zhang, Y. Li, H. Wu, Z. Gu, Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative and antibacterial properties for accelerated wound healing. Carbohydr. Polym. 257, 117598 (2021). https://doi.org/10.1016/j.carbpol.2020.117598

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The listed author(s) are thankful to their representative universities for providing the literature services.

Funding

The authors declare that they have no known competing, financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

EI: conceptualization, investigation, data curation, resources, validation, formal analysis, writing—original draft, writing-review and editing, supervision, resources.

Corresponding author

Correspondence to Eliasu Issaka.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issaka, E. State-of-the-Art of Synthesized Exosomes and NPs-Based Biomimetic Nanoparticles for Wound Rehabilitation: A Review. Biomedical Materials & Devices 2, 241–274 (2024). https://doi.org/10.1007/s44174-023-00112-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-023-00112-w

Keywords

Navigation