Skip to main content
Log in

Zinc Imidazolate Metal–Organic Frameworks-8-Encapsulated Enzymes/Nanoenzymes for Biocatalytic and Biomedical Applications

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The pervasive nature, efficiency, and selectivity as catalysts make enzymes indispensable in chemical syntheses and drug delivery. Enzyme’s use is hindered by their fragile nature and high cost, and so, their encapsulation into MOFs is a crucial strategy for ensuring the maximum retention of enzyme activity and guaranteeing the distribution of analytes to and for the enzyme active sites. Owing to its efficient catalytic activity and high thermal and chemical stabilities of ZIF-8, it is an attractive carrier of enzymes for biosensing and biocatalysis. ZIF-8 is typically fabricated via a solvothermal procedure, although other synthesis methods like microwave, microwave-assisted, ionothermal, mechanochemical, steam-assisted, and sonochemical synthesis are used. Room-temperature synthesis is more eco-friendly and hence has received great applications. Metalloenzymes have gained attention because of their merits over natural enzymes. The iron porphyrin derivative, heme, contains the active site of hemeproteins. This active site mimics the peroxidase-like activity. The heme centre is encapsulated with ZIF-8 to form crystals and protect them. This strategy is widely utilized due to its excellent qualities in imitating the catalytic activities seen in native peroxidase. Protein-ZIF-8 hybrid amalgams availing greater catalytic activity for visual colourimetric biocatalytic sensing have attracted increasing interest by using ZIF-8 as an enzyme-immobilization matrix and fluorescence quencher. Our group hence outlined various mechanisms involved in synthesizing ZIF-8, comparing said methods, and discussed using ZIF_8@enzyme mimics for colourimetric assays. This paper ends by demonstrating ZIF-8 in other research directions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 

Similar content being viewed by others

Abbreviations

ALP:

Alkaline Phosphatase

ATRP:

Atom transfer radical polymerization

BCA:

Bicinchoninic Acid

BCDs:

Blue carbon dots

BHb:

Bovine haemoglobin

Bmim-BF4:

Butyl-3-methyl-imidazolium tetrafluoroborate

BMP-6:

Bone morphogenetic protein-6

C10H22 :

Decane

CAD:

Computer aided design

CCS:

Carbon capture and storage

CDT:

Carbohydrate-deficient transferrin

CH4 :

Methane gas

CME:

Crucible melt exchange

CO2 :

Carbon dioxide

Cyt c-MOF:

Cytochrome C—Metal–Organic Framework

Dcp:

Dichlorophenol

ddH2O:

Double distilled water

DhHP:

Deuterohemin-Peptide

DhHP-6@ZIF-8:

Deuterohemin-Peptide functionalized Zeolitic imidazolate framework-8

DMF:

Dimethylformamide

DOX:

Doxorubicin

DOX@ZIF-8:

Doxorubicin functionalized Zeolitic imidazolate framework-8

EtOH:

Ethanol

FITC:

Fluorescein isothiocyanate

Fe-PDA:

Iron-polydopamine

Fe3O4 :

Iron oxide

FITC- GOx:

Fluorescein isothiocyanate – glucose oxidase

GCE:

Glassy Carbon Electrode

Gox:

Glucose oxidase

GOx@ZIF-8@Fe-PDA:

Glucose oxidase functionalized Zeolitic imidazolate framework-8 immobilized Iron-polydopamine

His:

Histidine

His@ZIF-8/Tb3+ :

Histidine functionalized Zeolitic imidazolate framework-8 doped terbium

hMSC:

Human mesenchymal stem cells

HPLC–UV:

High-performance liquid chromatography- ultra-violet

HP-PCN-224:

Hierarchically porous- porous coordination polymer-224

HRP:

Horseradish Peroxidase

HRP@ZIF-8:

Horseradish peroxidase functionalized Zeolitic imidazolate framework

HRP@ZIF-8/DNA:

Horseradish peroxidase functionalized Zeolitic imidazolate framework-8/Deoxyribonucleic acid

INAzymes:

PDA Immobilized nano-zymes

KCl:

Potassium chloride

KNO3 :

Potassium nitrate

KUST-1:

Hong Kong University of Science and Technology) – 1

L -SDS ZIF-8:

Lipase-sodium dodecyl sulphate assisted zeolitic imidazolate framework-8

LOD:

Limit of detection

MeIm:

Methylimidazole

MeOH:

Methanol

MIL-101(Cr):

Chromium terephthalate metal–organic framework

MOFs:

Metal Organic Frameworks

mRNA:

Messenger Ribonucleic acid

MSC:

Mesenchymal Stem Cell

MTBS:

Tributylmethylammonium methyl sulfate

Na2SO4:

Sodium sulfate

NaOH:

Sodium Hydroxide

OH:

Hydroxyl radicals

PBS:

Phosphate-buffered saline

PCL:

Polycaprolactone

PDT:

Photodynamic therapy

PEG:

Poly (ethylene glycol)

PER:

Primer exchange reaction

PLGA:

Poly (lactide-co-glycolide) acid

PMSC:

Porphyrin mesenchymal stem cells

PVA/H2O:

Poly(vinyl alcohol)/water

rbMSC:

Rat bone marrow mesenchymal stem cells

RhB-HRP:

Rhodamine B – horseradish peroxidase

ssDNA:

Single-stranded DNA

Tb:

Terbium

TMB:

Tetramethylbenzidine

UV-Vis:

Ultra-violet-visible

YCDs:

Yellow carbon dots

ZIF-8:

Zeolitic imidazolate framework-8

ZIF-8/GCE:

Zeolitic imidazolate framework-8/ Glassy Carbon Electrode

ZIF-8-lipase-SDS:

Zeolitic imidazolate framework-8- Lipase-Sodium dodecyl sulfate

ZIF-8@BHb ZIF-8:

Functionalized bovine haemoglobin

ZIF-8@PEDOT:

PSS Zeolitic imidazolate framework-8 functionalized polystyrene sulfonate-doped poly(3,4-ethylene dioxythiophene)

Zn(NO3):

Zinc nitrate

Zn(NO3)2·6H2O:

Zinc nitrate hexahydrate

References

  1. Bennett NJ, Roth R, Klain SC et al (2017) Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol Cons 205:93–108. https://doi.org/10.1016/J.BIOCON.2016.10.006

    Article  Google Scholar 

  2. Horike S et al (2020) A new dimension for coordination polymers and metal–organic frameworks: towards functional glasses and liquids. Angewandte Chemie Int Ed 59:6652–6664. https://doi.org/10.1002/anie.201911384

    Article  CAS  Google Scholar 

  3. Neofotistou E et al (2009) Unprecedented sulfone-functionalized metal-organic frameworks and gas-sorption properties. Chem Eur J. https://doi.org/10.1002/chem.200900341

    Article  PubMed  Google Scholar 

  4. Pettinari C, Marchetti F, Mosca N et al (2017) Application of metal − organic frameworks. Polym Int 66:731–744. https://doi.org/10.1002/PI.5315

    Article  CAS  Google Scholar 

  5. Issaka E, Amu-Darko JNO, Yakubu S et al (2022) Advanced catalytic ozonation for degradation of pharmaceutical pollutants-a review. Chemosphere. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133208

    Article  PubMed  Google Scholar 

  6. Zhang C, Wang X, Hou M et al (2017) Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection. ACS Appl Mater Interfaces 9:13831–13836. https://doi.org/10.1021/ACSAMI.7B02803/SUPPL_FILE/AM7B02803_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  7. Chen Z, Wasson M, Drout R et al (2021) The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discuss 225:9–69

    Article  CAS  PubMed  Google Scholar 

  8. Roztocki K, Senkovska I, Kaskel S, Matoga D (2016) Carboxylate-hydrazone mixed-linker metal-organic frameworks: synthesis, structure, and selective gas adsorption. Eur J Inorg Chem. https://doi.org/10.1002/EJIC.201600134

    Article  Google Scholar 

  9. Wu X, Yue H, Zhang Y et al (2019) Packaging and delivering enzymes by amorphous metal-organic frameworks. Nat Commun. https://doi.org/10.1038/s41467-019-13153-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lyu F, Zhang Y, Zare RN et al (2014) One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett 14:5761–5765. https://doi.org/10.1021/NL5026419/SUPPL_FILE/NL5026419_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Cao X, Ge J (2021) Antioxidative composites based on multienzyme systems encapsulated in metal-organic frameworks. ACS Appl Mater Interfaces 13:46431–46439. https://doi.org/10.1021/ACSAMI.1C15506/SUPPL_FILE/AM1C15506_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Zhi W, Lian D et al (2019) HRP@ZIF-8/DNA Hybrids: Functionality Integration of ZIF-8 via Biomineralization and Surface Absorption. ACS Sustainable Chem Eng 7:14611–14620. https://doi.org/10.1021/ACSSUSCHEMENG.9B02348

    Article  CAS  Google Scholar 

  13. Huang S, Kou X, Shen J et al (2020) Armor-plating enzymes with metal-organic frameworks (MOFs). Angewandte Chemie Int 59(23):8786. https://doi.org/10.1002/anie.201916474

    Article  CAS  Google Scholar 

  14. Liang J, Liang K (2020) Multi-enzyme cascade reactions in metal-organic frameworks. Chem Rec 20:1100–1116. https://doi.org/10.1002/TCR.202000067

    Article  CAS  PubMed  Google Scholar 

  15. Majewski MB, Howarth AJ, Li P et al (2017) Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm 19:4082–4091. https://doi.org/10.1039/C7CE00022G

    Article  CAS  Google Scholar 

  16. Issaka E, Fapohunda FO, Amu-Darko JNO et al (2022) Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. Chemosphere 297:134163. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134163

    Article  CAS  PubMed  Google Scholar 

  17. Bilal M, Adeel M, Rasheed T et al (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation – a review. Environ Int 124:336–353. https://doi.org/10.1016/J.ENVINT.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  18. Xu W, Jiao L, Wu Y et al (2021) Metal-organic frameworks enhance biomimetic cascade catalysis for biosensing. Adv Mater 33:2005172. https://doi.org/10.1002/ADMA.202005172

    Article  CAS  Google Scholar 

  19. Hu C, Bai Y, Hou M et al (2020) Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Sci Adv. https://doi.org/10.1126/SCIADV.AAX5785/SUPPL_FILE/AAX5785_SM.PDF

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Xu L, Ge J (2022) Multienzyme system in amorphous metal-organic frameworks for intracellular lactate detection. Nano Lett. https://doi.org/10.1021/ACS.NANOLETT.2C01154

    Article  PubMed  PubMed Central  Google Scholar 

  21. Feng Y, Cao X, Zhang L et al (2022) Defect engineering of enzyme-embedded metal–organic frameworks for smart cargo release. Chem Eng J 439:135736. https://doi.org/10.1016/J.CEJ.2022.135736

    Article  CAS  Google Scholar 

  22. Taheri M, di Bernardo I, Lowe A et al (2020) Green Full Conversion of ZnO Nanopowders to Well-Dispersed Zeolitic Imidazolate Framework-8 (ZIF-8) Nanopowders via a Stoichiometric Mechanochemical Reaction for Fast Dye Adsorption. Cryst Growth Des 20:2761–2773. https://doi.org/10.1021/ACS.CGD.0C00129

    Article  CAS  Google Scholar 

  23. Fan M, Gan T, Yin G et al (2021) Molecularly imprinted polymer coated Mn-doped ZnS quantum dots embedded in a metal-organic framework as a probe for selective room temperature phosphorescence detection of chlorpyrifos. RSC Adv 11:27845–27854. https://doi.org/10.1039/d1ra05537b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meng J, Niu C, Xu L et al (2017) General oriented formation of carbon nanotubes from metal-organic frameworks. J Am Chem Soc 139:8212–8221. https://doi.org/10.1021/JACS.7B01942

    Article  CAS  PubMed  Google Scholar 

  25. Ge D, Lee HK (2011) Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1218:8490–8495. https://doi.org/10.1016/j.chroma.2011.09.077

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Jiao Z, Yao W (2014) A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J Chromatogr A 1371:74–81. https://doi.org/10.1016/j.chroma.2014.10.088

    Article  CAS  PubMed  Google Scholar 

  27. Gao S, Hou J, Deng Z et al (2019) Improving the acidic stability of zeolitic imidazolate frameworks by biofunctional molecules. Chem 5(6):1597–1608

    Article  CAS  Google Scholar 

  28. Tan YX, Wang F, Zhang J (2018) Design and synthesis of multifunctional metal–organic zeolites. Chem Soc Rev 47(6):2130–2144

    Article  CAS  PubMed  Google Scholar 

  29. Yilmaz G, Peh SB, Zhao D, Ho GW (2019) Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv Sci. https://doi.org/10.1002/ADVS.201901129

    Article  Google Scholar 

  30. Duo H, Lu X, Wang S et al (2020) Preparation and applications of metal-organic framework derived porous carbons as novel adsorbents in sample preparation. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2020.116093

    Article  Google Scholar 

  31. Ghorbani Y, Ghoreishi S et al (2020) Derived N-doped carbon through core-shell structured metal-organic frameworks as a novel sorbent for dispersive solid phase extraction of Cr (III) and Pb (II) from. Microchem J. https://doi.org/10.1016/j.microc.2020.104786

    Article  Google Scholar 

  32. Meng J, Niu C, Xu L et al (2017) General oriented formation of carbon nanotubes from metal–organic frameworks. J Am Chem Soc. https://doi.org/10.1021/jacs.7b01942

    Article  PubMed  Google Scholar 

  33. Wang Y, Chen J, Ihara H et al (2021) Preparation of porous carbon nanomaterials and their application in sample preparation: a review. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2021.116421

    Article  Google Scholar 

  34. Geng Z, Song Q, Yu B et al (2018) Using ZIF-8 as stationary phase for capillary electrophoresis separation of proteins. Talanta. https://doi.org/10.1016/j.talanta.2018.06.027

    Article  PubMed  Google Scholar 

  35. Hao L, Liu X, Wang J et al (2015) Use of ZIF-8-derived nanoporous carbon as the adsorbent for the solid phase extraction of carbamate pesticides prior to high-performance liquid chromatographic analysis. Talanta 142:104–109. https://doi.org/10.1016/j.talanta.2015.04.034

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka S, Nagaoka T (2018) Hierarchical pore development of ZIF-8 MOF by simple salt-assisted mechanosynthesis. Cryst Growth Des. https://doi.org/10.1021/acs.cgd.7b01211

    Article  Google Scholar 

  37. Wang L, Zhi W, Lian D et al (2019) HRP@ ZIF-8/DNA hybrids: functionality integration of ZIF-8 via biomineralization and surface absorption. ACS Sustainable Chem Eng. 7(17):14611–14620. https://doi.org/10.1021/acssuschemeng.9b02348

    Article  CAS  Google Scholar 

  38. Gao F, Yang J, Tu X et al (2021) Facile synthesis of ZIF-8@poly(3,4-ethylenedioxythiophene):poly (4-styrenesulfonate) and its application as efficient electrochemical sensor for the determination dichlorophenol. Synth Met. https://doi.org/10.1016/j.synthmet.2021.116769

    Article  Google Scholar 

  39. Zhang S, Yang Q, Li Z et al (2016) Zeolitic imidazole framework templated synthesis of nanoporous carbon as a novel fiber coating for solid-phase microextraction. Analyst. https://doi.org/10.1039/C5AN02059J

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu X, Ge J, Yang C et al (2015) Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chem Commun 51:13408–13411. https://doi.org/10.1039/C5CC05136C

    Article  CAS  Google Scholar 

  41. Yang XQ, Yang CX, Yan XP (2013) Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples. J Chromatogr A 1304:28–33. https://doi.org/10.1016/j.chroma.2013.06.064

    Article  CAS  PubMed  Google Scholar 

  42. Salazar-Beltrán D, Cabello CP, Guzmán-Mar JL et al (2018) Nanoparticle@metal-organic frameworks as a template for hierarchical porous carbon sponges. Chem Eur J 24:13450–13456. https://doi.org/10.1002/chem.201802545

    Article  CAS  PubMed  Google Scholar 

  43. Jiao L, Seow J, Skinner W et al (2019) Metal–organic frameworks: Structures and functional applications. Mater Today 27:43–68

    Article  CAS  Google Scholar 

  44. Tanaka S, Nagaoka T, Yasuyoshi A et al (2018) Hierarchical Pore Development of ZIF-8 MOF by Simple Salt-Assisted Mechanosynthesis. Cryst Growth Des 18:274–279. https://doi.org/10.1021/ACS.CGD.7B01211

    Article  CAS  Google Scholar 

  45. Xu W, Jiao L, Wu Y et al (2021) Metal-organic frameworks enhance biomimetic cascade catalysis for biosensing. Adv Mat. https://doi.org/10.1002/adma.202005172

    Article  Google Scholar 

  46. Hao L, Liu X, Wang J et al (2015) Use of ZIF-8-derived nanoporous carbon as the adsorbent for the solid phase extraction of carbamate pesticides prior to high-performance liquid chromatographic. Talanta 142:104–109

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Jin S, Wang Q et al (2013) Zeolitic imidazolate framework-8 as sorbent of micro-solid-phase extraction to determine estrogens in environmental water samples. J Chromatogr A 1291:27–32. https://doi.org/10.1016/j.chroma.2013.03.032

    Article  CAS  PubMed  Google Scholar 

  48. Salgaonkar M, Nadar S (2018) Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Int J Biol Macromol 113:464–475

    Article  CAS  PubMed  Google Scholar 

  49. Gascón V, Castro-Miguel E, Díaz-García M, Blanco RM, Sanchez-Sanchez M (2017) In situ and post-synthesis immobilization of enzymes on nanocrystalline MOF platforms to yield active biocatalysts. J Chem Technol Biotechnol 92(10):2583–2593

    Article  Google Scholar 

  50. Adnan M, Li K, Xu L et al (2018) X-shaped ZIF-8 for immobilization rhizomucor miehei lipase via encapsulation and its application toward biodiesel production. Catalysts 8(3):96

    Article  Google Scholar 

  51. Tanaka S, Sakamoto K, Inada H et al (2018) Vapor-phase synthesis of ZIF-8 MOF thick film by conversion of ZnO nanorod array. Langmuir 34(24):7028–7033

    Article  CAS  PubMed  Google Scholar 

  52. Gimeno-Fabra M, Munn AS, Stevens LA et al (2012) Instant MOFs: continuous synthesis of metal–organic frameworks by rapid solvent mixing. Chem Commun 48:10642–10644. https://doi.org/10.1039/C2CC34493A

    Article  CAS  Google Scholar 

  53. Lin Y, Kong C, Chen L (2016) Amine-functionalized metal–organic frameworks: structure, synthesis and applications. RSC Adv 6(39):32598–32614

    Article  CAS  Google Scholar 

  54. Hashemi B, Zohrabi P, Raza N, Kim KH (2017) Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. TrAC - Trends Anal Chem 97:65–82

    Article  CAS  Google Scholar 

  55. An H, Song J, Wang T et al (2020) Metal-organic framework disintegrants: enzyme preparation platforms with boosted activity. Angew Chem 59:16764–16769. https://doi.org/10.1002/ANGE.202007827

    Article  CAS  Google Scholar 

  56. Kriesten M, Schmitz JV, Siegel J et al (2019) Shaping of flexible metal-organic frameworks: combining macroscopic stability and framework flexibility. Eur J Inorg Chem. https://doi.org/10.1002/EJIC.201901100

    Article  Google Scholar 

  57. Tang Z, Li X, Tong L et al (2021) A biocatalytic cascade in an ultrastable mesoporous hydrogen-bonded organic framework for point-of-care biosensing. Angewandte Chemie – Int Ed 60:23608–23613. https://doi.org/10.1002/ANIE.202110351

    Article  CAS  Google Scholar 

  58. Xiao Y, Hong A, Hu D et al (2019) Solvent-free synthesis of zeolitic imidazolate frameworks and the catalytic properties of their carbon materials. Chem Eur J. https://doi.org/10.1002/chem.201903888

    Article  PubMed  Google Scholar 

  59. Lan H, Rönkkö T, Parshintsev J et al (2017) Modified zeolitic imidazolate framework-8 as solid-phase microextraction arrow coating for sampling of amines in wastewater and food samples followed by gas chromatography-mass spectrometry. J Chromatogr A 1486:76–85. https://doi.org/10.1016/j.chroma.2016.10.081

    Article  CAS  PubMed  Google Scholar 

  60. Wu Q, Cheng S, Wang C et al (2016) Magnetic porous carbon derived from a zinc-cobalt metal-organic framework: a adsorbent for magnetic solid phase extraction of flunitrazepam. Microchim Acta. https://doi.org/10.1007/s00604-016-1948-7

    Article  Google Scholar 

  61. Guo Y, Chen X, Zhang X et al (2018) Comparative studies on ZIF-8 and SiO2 nanoparticles as carrier for immobilized Β-glucosidase. Mol Catal 459:1–7. https://doi.org/10.1016/j.mcat.2018.08.004

    Article  CAS  Google Scholar 

  62. Hadi K, Yao X, Behr JM et al (2020) Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183:197-210.e32. https://doi.org/10.1016/J.CELL.2020.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cleal K, Jones RE, Grimstead JW et al (2019) Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin. Genome Res 29:737–749. https://doi.org/10.1101/gr.240705.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang R, Tang T (2018) Assembly of magnetic nano-Fe3O4@GSH-Au NCs core-shell microspheres for the visualization of latent fingerprints. NANO. https://doi.org/10.1142/S179329201850128X

    Article  Google Scholar 

  65. Huang R, Zhang Y (2018) Synthesis of Fe3O4@GSH-Pt NCs core-Shell microspheres for latent fingerprint detection. Bull Chem Soc Jpn 91:1697–1703. https://doi.org/10.1246/bcsj.20180168

    Article  CAS  Google Scholar 

  66. Martínez-Pérez-Cejuela H, Mompó-Roselló Ó, Crespí-Sánchez N et al (2020) Determination of benzomercaptans in environmental complex samples by combining zeolitic imidazolate framework-8-based solid-phase extraction and high-performance liquid chromatography with UV detection. J Chromatogr A. https://doi.org/10.1016/j.chroma.2020.461580

    Article  PubMed  Google Scholar 

  67. Liu J, Liang J, Xue J, Liang K (2021) Metal-organic frameworks as a versatile materials platform for unlocking new potentials in biocatalysis. Small. https://doi.org/10.1002/SMLL.202100300

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jiao C, Li M, Ma R et al (2016) Preparation of a Co-doped hierarchically porous carbon from Co/Zn-ZIF: an efficient adsorbent for the extraction of trizine herbicides from environment water and white gourd samples. Talanta 152:321–328. https://doi.org/10.1016/j.talanta.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  69. Tanaka S, Miyashita R (2017) Aqueous-system-enabled spray-drying technique for the synthesis of hollow polycrystalline ZIF-8 MOF Particles. ACS Omega 2:6437–6445. https://doi.org/10.1021/ACSOMEGA.7B01325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nadar SS, Rathod VK (2019) One pot synthesis of α-amylase metal organic framework (MOF)-sponge via dip-coating technique. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.07.099

    Article  PubMed  Google Scholar 

  71. Vaidya LB, Nadar SS, Rathod VK (2020) Entrapment of surfactant modified lipase within zeolitic imidazolate framework (ZIF)-8. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.12.164

    Article  PubMed  Google Scholar 

  72. Vaidya LB, Nadar SS, Rathod VK (2020) Entrapment of surfactant modified lipase within zeolitic imidazolate framework (ZIF)-8. Int J Biol Macromol 146:678–686. https://doi.org/10.1016/J.IJBIOMAC.2019.12.164

    Article  CAS  PubMed  Google Scholar 

  73. Lee YR, Jang MS, Cho HY et al (2015) ZIF-8: a comparison of synthesis methods. Chem Eng J 271:276–280. https://doi.org/10.1016/J.CEJ.2015.02.094

    Article  CAS  Google Scholar 

  74. Wu Q, Cheng S, Wang C et al (2016) Magnetic porous carbon derived from a zinc-cobalt metal-organic framework: a adsorbent for magnetic solid phase extraction of flunitrazepam. Microchim Acta 183:3009–3017. https://doi.org/10.1007/S00604-016-1948-7

    Article  CAS  Google Scholar 

  75. Moxon S, Cooke M, Cox S et al (2017) Suspended manufacture of biological structures. Adv Mater. https://doi.org/10.1002/(ISSN)1521-4095

    Article  PubMed  Google Scholar 

  76. Vaidya LB, Nadar SS, Rathod VK (2020) Biological metal organic framework (bio-MOF) of glucoamylase with enhanced stability. Colloid Surf B: Biointerf. https://doi.org/10.1016/j.colsurfb.2020.111052

    Article  Google Scholar 

  77. Li X, Li D, Zhang Y et al (2020) Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104308

    Article  Google Scholar 

  78. Gascón V, Castro-Miguel E, Díaz-García M et al (2017) In situ and post-synthesis immobilization of enzymes on nanocrystalline MOF platforms to yield active biocatalysts. J Chem Technol Biotechnol 92:2583–2593. https://doi.org/10.1002/JCTB.5274

    Article  Google Scholar 

  79. Stasyuk N, Gayda G, Kavetskyy T, Gonchar M (2022) Nanozymes with reductase-like activities: antioxidant properties and electrochemical behavior. RSC Adv 12:2026–2035. https://doi.org/10.1039/d1ra08127f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  81. Wu J, Wang X, Wang Q et al (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076. https://doi.org/10.1039/c8cs00457a

    Article  CAS  PubMed  Google Scholar 

  82. Wang H, Wan K, Shi X (2019) Recent advances in nanozyme research. Adv Mater. https://doi.org/10.1002/adma.201805368

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105. https://doi.org/10.1021/ar400250z

    Article  CAS  PubMed  Google Scholar 

  84. Torres Castillo NE, Melchor-Martínez EM, Ochoa Sierra JS et al (2021) Enzyme mimics in-focus: Redefining the catalytic attributes of artificial enzymes for renewable energy production. Int J Biol Macromol 179:80–89. https://doi.org/10.1016/J.IJBIOMAC.2021.03.002

    Article  CAS  PubMed  Google Scholar 

  85. Krokidas P, Castier M, Economou IG (2017) Computational study of ZIF-8 and ZIF-67 performance for separation of gas mixtures. J Phys Chem C 121:17999–18011. https://doi.org/10.1021/ACS.JPCC.7B05700

    Article  CAS  Google Scholar 

  86. Kaur G, Rai RK, Tyagi D et al (2016) Room-temperature synthesis of bimetallic Co-Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. J Mat Chem A 4:14932–14938. https://doi.org/10.1039/C6TA04342A

    Article  CAS  Google Scholar 

  87. Li J, Chang H, Li Y et al (2020) Synthesis and adsorption performance of La@ZIF-8 composite metal-organic frameworks. RSC Adv 10:3380–3390. https://doi.org/10.1039/C9RA10548D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jing Y, Lei Q, Xia C et al (2019) Synthesis of Ag and AgCl co-doped ZIF-8 hybrid photocatalysts with enhanced photocatalytic activity through a synergistic effect. RSC Adv 10:698–704. https://doi.org/10.1039/C9RA10100D

    Article  Google Scholar 

  89. Huang XC, Lin YY, Zhang JP, Chen XM (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie – Int Ed 45:1557–1559. https://doi.org/10.1002/ANIE.200503778

    Article  CAS  Google Scholar 

  90. Fu F, Zheng B, Xie LH et al (2018) Size-controllable synthesis of zeolitic imidazolate framework/carbon nanotube composites. Crystals (Basel). https://doi.org/10.3390/CRYST8100367

    Article  PubMed Central  Google Scholar 

  91. Feng S, Zhang X, Shi D, Wang Z (2021) Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review. Front Chem Sci Eng 15:221–237. https://doi.org/10.1007/S11705-020-1927-8

    Article  CAS  Google Scholar 

  92. Fang C, Cen D, Wang Y et al (2020) ZnS@ZIF-8 core-shell nanoparticles incorporated with ICG and TPZ to enable H2S-amplified synergistic therapy. Theranostics 10:7671–7682. https://doi.org/10.7150/THNO.45079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen G, Yu B, Lu C et al (2018) Controlled synthesis of Fe3O4@ZIF-8 nanoparticles for drug delivery. CrystEngComm 20:7486–7491. https://doi.org/10.1039/C8CE01302K

    Article  CAS  Google Scholar 

  94. Awadallah-F A, Hillman F, Al-Muhtaseb SA, Jeong HK (2019) Influence of doped metal center on morphology and pore structure of ZIF-8. MRS Commun 9:288–291. https://doi.org/10.1557/MRC.2018.221

    Article  CAS  Google Scholar 

  95. Bergaoui M, Khalfaoui M, Awadallah-F A, Al-Muhtaseb S (2021) A review of the features and applications of ZIF-8 and its derivatives for separating CO2 and isomers of C3- and C4- hydrocarbons. J Nat Gas Sci Eng 96:104289. https://doi.org/10.1016/J.JNGSE.2021.104289

    Article  CAS  Google Scholar 

  96. Awadallah A, Hillman F, Al-Muhtaseb SA, Jeong HK (2019) Nano-gate opening pressures for the adsorption of isobutane, n-butane, propane, and propylene gases on bimetallic Co-Zn based zeolitic imidazolate frameworks. Dalton Trans 48:4685–4695. https://doi.org/10.1039/C9DT00222G

    Article  Google Scholar 

  97. Yin Y, Gao C, Xiao Q et al (2016) Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform. ACS Appl Mater Interfaces 8:29052–29061. https://doi.org/10.1021/ACSAMI.6B09893

    Article  CAS  PubMed  Google Scholar 

  98. Hu X, Liu X, Zhang X et al (2018) One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H2O2 and screening of oxidase activity. Biosens Bioelectron 105:65–70. https://doi.org/10.1016/J.BIOS.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  99. Zhang X, Bi X, Di W, Qin W (2016) A simple and sensitive Ce(OH)CO3/H2O2/TMB reaction system for colorimetric determination of H2O2 and glucose. Sens Actuators, B: Chem. https://doi.org/10.1016/j.snb.2016.03.087

    Article  PubMed  Google Scholar 

  100. Wan GZ, Ma XH, Jin L, Chen J (2021) α-glucosidase immobilization on magnetic core-shell metal-organic frameworks for inhibitor screening from traditional Chinese medicines. Colloids Surf, B. https://doi.org/10.1016/j.colsurfb.2021.111847

    Article  Google Scholar 

  101. Li CR, Hai J, Fan L et al (2019) Amplified colorimetric detection of Ag+ based on Ag+-triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets. Sens Actuators, B: Chem 284:213–219. https://doi.org/10.1016/J.SNB.2018.12.137

    Article  CAS  Google Scholar 

  102. Chen J, Sun B, Sun C et al (2020) Immobilization of lipase AYS on UiO-66-NH2 metal-organic framework nanoparticles as a recyclable biocatalyst for ester hydrolysis and kinetic resolution. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117398

    Article  Google Scholar 

  103. Lu W, Jiao Y, Gao Y et al (2018) Bright yellow fluorescent carbon dots as a multifunctional sensing platform for the label-free detection of fluoroquinolones and histidine. ACS Appl Mater Interfaces 10:42915–42924. https://doi.org/10.1021/ACSAMI.8B16710

    Article  CAS  PubMed  Google Scholar 

  104. Jalili R, Khataee A, Rashidi MR, Luque R (2019) Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione. Sens Actuators, B Chem 297:126775

    Article  CAS  Google Scholar 

  105. Mohammadi S, Salimi A, Hoseinkhani Z et al (2022) Carbon dots hybrid for dual fluorescent detection of microRNA-21 integrated bioimaging of MCF-7 using a microfluidic platform. J Nanobiotechnol. https://doi.org/10.1186/S12951-022-01274-3

    Article  Google Scholar 

  106. Shatery OBA, Omer KM (2022) Selectivity enhancement for uric acid detection via in situ preparation of blue emissive carbon dots entrapped in chromium metal-organic frameworks. ACS Omega. https://doi.org/10.1021/ACSOMEGA.2C00790/ASSET/IMAGES/MEDIUM/AO2C00790_0005.GIF

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhao Z, Lin T, Liu W et al (2019) Colorimetric detection of blood glucose based on GOx@ZIF-8@Fe-polydopamine cascade reaction. Spectrochim Acta A Mol Biomol Spectrosc 219:240–247. https://doi.org/10.1016/J.SAA.2019.04.061

    Article  CAS  PubMed  Google Scholar 

  108. Maleki A, Shahbazi MA, Alinezhad V, Santos HA (2020) The progress and prospect of zeolitic imidazolate frameworks in cancer therapy, antibacterial activity, and biomineralization. Adv Healthcare Mater. https://doi.org/10.1002/ADHM.202000248

    Article  Google Scholar 

  109. Xia H, Li N, Zhong X, Jiang Y (2020) Metal-Organic Frameworks: A Potential Platform for Enzyme Immobilization and Related Applications. Front Bioeng Biotechnol. https://doi.org/10.3389/FBIOE.2020.00695/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  110. Brett MW, Gordon CK, Hardy J, Davis NJLK (2022) The rise and future of discrete organic-inorganic hybrid nanomaterials. ACS Phys Chem Au. https://doi.org/10.1021/ACSPHYSCHEMAU.2C00018

    Article  PubMed  PubMed Central  Google Scholar 

  111. Izci M, Maksoudian C, Manshian BB, Soenen SJ (2021) The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev 121:1746–1803. https://doi.org/10.1021/ACS.CHEMREV.0C00779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu K, Aung T, Guo N et al (2018) Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. https://doi.org/10.1002/ADMA.201707634

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ma Y, Qu X, Liu C et al (2021) Metal-organic frameworks and their composites towards biomedical applications. Front Mol Biosci. https://doi.org/10.3389/FMOLB.2021.805228/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pan Q, Nie C, Hu Y et al (2020) Aptamer-functionalized dna origami for targeted codelivery of antisense oligonucleotides and doxorubicin to enhance therapy in drug-resistant cancer cells. ACS Appl Mater Interfaces 12:400–409. https://doi.org/10.1021/ACSAMI.9B20707

    Article  CAS  PubMed  Google Scholar 

  115. Sun Y, Zheng L, Yang Y et al (2020) Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Letters. https://doi.org/10.1007/S40820-020-00423-3

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hnatchuk N, Pawale T, Li X (2022) Asymmetric polymer materials: Synthesis, structure, and performance. Polymer (Guildf). https://doi.org/10.1016/J.POLYMER.2022.124607

    Article  Google Scholar 

  117. Li J, Liu Y, Zhang Y et al (2021) Biophysical and biochemical cues of biomaterials guide mesenchymal stem cell behaviors. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/FCELL.2021.640388/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  118. Viti F, Landini M, Mezzelani A et al (2016) Osteogenic differentiation of MSC through calcium signaling activation: transcriptomics and functional analysis. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0148173

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nie X, Zhang X, Lei B et al (2022) Regulation of magnesium matrix composites materials on bone immune microenvironment and osteogenic mechanism. Front Bioeng Biotechnol. https://doi.org/10.3389/FBIOE.2022.842706/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  120. Naqvi SM, McNamara LM (2020) Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration. Front Bioeng Biotechnol. https://doi.org/10.3389/FBIOE.2020.597661/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  121. Arendsen LP, Thakar R, Sultan AH (2019) The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00125-18

    Article  PubMed  PubMed Central  Google Scholar 

  122. Romanò CL, Tsuchiya H, Morelli I et al (2019) Antibacterial coating of implants: Are we missing something? Bone Joint Res 8:199–206. https://doi.org/10.1302/2046-3758.85.BJR-2018-0316

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zou F, Jiang J, Lv F et al (2020) Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair. J Nanobiotechnol. https://doi.org/10.1186/S12951-020-00594-6

    Article  Google Scholar 

  124. Lu X, Wu Z, Xu K et al (2021) Multifunctional coatings of titanium implants toward promoting osseointegration and preventing infection: recent developments. Front Bioeng Biotechnol. https://doi.org/10.3389/FBIOE.2021.783816/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhang Y, Li TT, Shiu BC et al (2022) Two methods for constructing ZIF-8 nanomaterials with good bio compatibility and robust antibacterial applied to biomedical. J Biomater Appl 36:1042–1054. https://doi.org/10.1177/08853282211033682

    Article  CAS  PubMed  Google Scholar 

  126. Deneff JI, Butler KS, Kotula PG et al (2021) Expanding the ZIFs repertoire for biological applications with the targeted synthesis of ZIF-20 nanoparticles. ACS Appl Mater Interfaces 13:27295–27304. https://doi.org/10.1021/ACSAMI.1C05657

    Article  CAS  PubMed  Google Scholar 

  127. Papini E, Tavano R, Mancin F (2020) Opsonins and dysopsonins of nanoparticles: facts, concepts, and methodological guidelines. Front Immunol. https://doi.org/10.3389/FIMMU.2020.567365/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bilardo R, Traldi F, Vdovchenko A, Resmini M (2022) Influence of surface chemistry and morphology of nanoparticles on protein corona formation. Wiley Interdisciplinary Rev: Nanomed Nanobiotechnol. https://doi.org/10.1002/WNAN.1788

    Article  Google Scholar 

  129. Luo G, Jiang Y, Xie C, Lu X (2021) Metal-organic framework-based biomaterials for biomedical applications. Biosurf Biotribol 7:99–112. https://doi.org/10.1049/BSB2.12012

    Article  Google Scholar 

  130. Fan Z, Zhuang C, Wang S, Zhang Y (2021) Photodynamic and Photothermal Therapy of Hepatocellular Carcinoma. Front Oncol. https://doi.org/10.3389/FONC.2021.787780/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cheng C, Li C, Zhu X et al (2019) Doxorubicin-loaded Fe3O4-ZIF-8 nano-composites for hepatocellular carcinoma therapy. J Biomater Appl 33:1373–1381. https://doi.org/10.1177/0885328219836540

    Article  CAS  PubMed  Google Scholar 

  132. Wang C, Tuninetti J, Wang Z et al (2017) Hydrolysis of Ammonia-borane over Ni/ZIF-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release. J Am Chem Soc 139:11610–11615. https://doi.org/10.1021/JACS.7B06859

    Article  CAS  PubMed  Google Scholar 

  133. Yan J, Liu C, Wu Q et al (2020) Mineralization of pH-sensitive doxorubicin prodrug in ZIF-8 to enable targeted delivery to solid tumors. Anal Chem 92:11453–11461. https://doi.org/10.1021/ACS.ANALCHEM.0C02599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Aime S, Alberich A, Almen A et al (2019) Strategic research agenda for biomedical imaging. Insights Imaging. https://doi.org/10.1186/S13244-019-0684-Z

    Article  Google Scholar 

  135. Shen H, Liu J, Lei J, Ju H (2018) A core–shell nanoparticle–peptide@metal–organic framework as pH and enzyme dual-recognition switch for stepwise-responsive imaging in living cells. Chem Commun 54:9155–9158. https://doi.org/10.1039/C8CC04621B

    Article  CAS  Google Scholar 

  136. Wu Y, Wu H, Lu X et al (2022) Development and evaluation of targeted optical imaging probes for image-guided surgery in head and neck cancer. Advanced Therapeutics. https://doi.org/10.1002/ADTP.202100196

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhang J, He M, Nie C et al (2019) Biomineralized metal-organic framework nanoparticles enable enzymatic rolling circle amplification in living cells for ultrasensitive microRNA imaging. Anal Chem 91:9049–9057. https://doi.org/10.1021/ACS.ANALCHEM.9B01343/SUPPL_FILE/AC9B01343_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  138. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. https://doi.org/10.3389/FENDO.2018.00402/FULL

    Article  Google Scholar 

  139. Rashid H, Hossain B, Siddiqua T et al (2020) Fecal MicroRNAs as Potential Biomarkers for Screening and Diagnosis of Intestinal Diseases. Front Mol Biosci. https://doi.org/10.3389/FMOLB.2020.00181/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tribolet L, Kerr E, Cowled C et al (2020) MicroRNA Biomarkers for Infectious Diseases: From Basic Research to Biosensing. Front Microbiol. https://doi.org/10.3389/FMICB.2020.01197/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  141. Islam MR, Kaurani L, Berulava T et al (2021) A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med. https://doi.org/10.15252/EMMM.202013659

    Article  PubMed  PubMed Central  Google Scholar 

  142. Sempere LF, Azmi AS, Moore A (2021) microRNA-based diagnostic and therapeutic applications in cancer medicine. Wiley Interdisciplinary Reviews: RNA. https://doi.org/10.1002/WRNA.1662

    Article  PubMed  Google Scholar 

  143. Roser AE, Gomes LC, Schünemann J et al (2018) Circulating miRNAs as diagnostic biomarkers for Parkinson’s disease. Front Neurosci. https://doi.org/10.3389/FNINS.2018.00625/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  144. Correia CN, Nalpas NC, McLoughlin KE et al (2017) Circulating microRNAs as potential biomarkers of infectious disease. Front Immunol. https://doi.org/10.3389/FIMMU.2017.00118/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  145. Dong X, Cong S (2021) MicroRNAs in Huntington’s Disease: Diagnostic Biomarkers or Therapeutic Agents? Front Cell Neurosci. https://doi.org/10.3389/FNCEL.2021.705348/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  146. Reddy KB (2015) MicroRNA (miRNA) in cancer. Cancer Cell Int. https://doi.org/10.1186/S12935-015-0185-1

    Article  PubMed  PubMed Central  Google Scholar 

  147. Yuan B, Huang T, Wang X et al (2022) Oxygen-Tolerant RAFT Polymerization Catalyzed by a Recyclable Biomimetic Mineralization Enhanced Biological Cascade System. Macromol Rapid Commun. https://doi.org/10.1002/MARC.202100559

    Article  PubMed  Google Scholar 

  148. Wang Y, Zhang N, Tan D et al (2020) Facile Synthesis of Enzyme-Embedded Metal-Organic Frameworks for Size-Selective Biocatalysis in Organic Solvent. Front Bioeng Biotechnol. https://doi.org/10.3389/FBIOE.2020.00714/FULL

    Article  PubMed  PubMed Central  Google Scholar 

  149. He H, Han H, Shi H et al (2016) Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution. ACS Appl Mater Interfaces 8:24517–24524. https://doi.org/10.1021/ACSAMI.6B05538/ASSET/IMAG

    Article  CAS  PubMed  Google Scholar 

  150. Guo F, Xu Z, Zhang W et al (2021) Facile synthesis of catalase@ZIF-8 composite by biomimetic mineralization for efficient biocatalysis. Bioprocess Biosyst Eng 44:1309–1319. https://doi.org/10.1007/S00449-021-02540-8

    Article  CAS  PubMed  Google Scholar 

  151. López-Cabrelles J, Romero J, Abellán G et al (2019) Solvent-Free Synthesis of ZIFs: a route toward the elusive Fe(II) analogue of ZIF-8. J Am Chem Soc 141:7173–7180. https://doi.org/10.1021/JACS.9B02686/ASSET/IMAGES

    Article  PubMed  Google Scholar 

  152. Lai Z (2018) Development of ZIF-8 membranes: opportunities and challenges for commercial applications. Curr Opinion Chem Eng 20:78–85

    Article  Google Scholar 

Download references

Acknowledgements

The listed author(s) are thankful to their representative universities for providing the literature services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nisar Ali or Muhammad Bilal.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issaka, E., Amu-Darko, J.N.O., Adams, M. et al. Zinc Imidazolate Metal–Organic Frameworks-8-Encapsulated Enzymes/Nanoenzymes for Biocatalytic and Biomedical Applications. Catal Lett 153, 2083–2106 (2023). https://doi.org/10.1007/s10562-022-04140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04140-x

Keywords

Navigation