Zhao N, You F (2020) Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition? Appl Energy 279:115889. https://doi.org/10.1016/j.apenergy.2020.115889
Article
Google Scholar
Czaun M, Kothandaraman J, Goeppert A, Yang B, Greenberg S, May RB, Olah GA, Prakash GKS (2016) Iridium-Catalyzed Continuous Hydrogen Generation from Formic Acid and Its Subsequent Utilization in a Fuel Cell: Toward a Carbon Neutral Chemical Energy Storage. ACS Catal 6:7475–7484. https://doi.org/10.1021/acscatal.6b01605
Article
Google Scholar
Ahirwar S, Mallick S, Bahadur D (2017) Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega 2:8343–8353. https://doi.org/10.1021/acsomega.7b01539
Article
Google Scholar
Penner RM (2000) Hybrid electrochemical/chemical synthesis of quantum dots. Acc Chem Res 33:78–86
Article
Google Scholar
Yang Y, Bremner S, Menictas C, Kay M (2018) Battery energy storage system size determination in renewable energy systems: A review. Renew Sustain Energy Rev 91:109–125
Article
Google Scholar
Denholm P, Nunemaker J, Gagnon P, Cole W (2020) The potential for battery energy storage to provide peaking capacity in the United States. Renew Energy 151:1269–1277
Article
Google Scholar
Ma T, Yang H, Lu L (2015) Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems. Appl Energy 153:56–62
Article
Google Scholar
Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790. https://doi.org/10.1039/C4CS00266K
Article
Google Scholar
Samsudin MFR, Sufian S (2020) Hybrid 2D/3D g-C3N4/BiVO4 photocatalyst decorated with RGO for boosted photoelectrocatalytic hydrogen production from natural lake water and photocatalytic degradation of antibiotics. J Mol Liq 314:113530. https://doi.org/10.1016/j.molliq.2020.113530
Article
Google Scholar
Adamopoulos PM, Papagiannis I, Raptis D, Lianos P (2019) Photoelectrocatalytic Hydrogen Production Using a TiO2/WO3 Bilayer Photocatalyst in the Presence of Ethanol as a Fuel. Catalysts 9:976. https://doi.org/10.3390/catal9120976
Article
Google Scholar
Baker SN, Baker GA (2010) Luminescent Carbon Nanodots: Emergent Nanolights. Angew Chem Int Ed 49:6726–6744. https://doi.org/10.1002/anie.200906623
Article
Google Scholar
Fowley C, Nomikou N, McHale AP, McCaughan B, Callan JF (2013) Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy. Chem Commun 49:8934–8936. https://doi.org/10.1039/C3CC45181J
Article
Google Scholar
Wu P, Xu Y, Zhan J, Li Y, Xue H, Pang H (2018) The research development of quantum dots in electrochemical energy storage. Small 14:1801479
Article
Google Scholar
Wang J, Tang L, Zeng G, Deng Y, Dong H, Liu Y, Wang L, Peng B, Zhang C, Chen F (2018) 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight. Appl Catal B Environ 222:115–123
Article
Google Scholar
Molaei MJ (2019) Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv 9:6460–6481
Article
Google Scholar
Ahmad P, Khandaker MU, Muhammad N, Khan G, Rehman F, Khan AS, Ullah Z, Khan A, Ali H, Ahmed SM, Rauf Khan MA, Iqbal J, Khan AA, Irshad MI (2019) Fabrication of hexagonal boron nitride quantum dots via a facile bottom-up technique. Ceram Int 45:22765–22768. https://doi.org/10.1016/j.ceramint.2019.07.316
Article
Google Scholar
Yang J, Ling T, Wu W-T, Liu H, Gao M-R, Ling C, Li L, Du X-W (2013) A top–down strategy towards monodisperse colloidal lead sulphide quantum dots. Nat Commun 4:1–6
Google Scholar
Sun H, Ji H, Ju E, Guan Y, Ren J, Qu X (2015) Synthesis of Fluorinated and Nonfluorinated Graphene Quantum Dots through a New Top-Down Strategy for Long-Time Cellular Imaging. Chem Eur J 21:3791–3797
Article
Google Scholar
Yan Y, Zhai D, Liu Y, Gong J, Chen J, Zan P, Zeng Z, Li S, Huang W, Chen P (2020) van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting. ACS Nano 14:1185–1195. https://doi.org/10.1021/acsnano.9b09554
Article
Google Scholar
Dervishi E, Ji Z, Htoon H, Sykora M, Doorn SK (2019) Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale 11:16571–16581
Article
Google Scholar
Gao T, Wang X, Zhao J, Jiang P, Jiang F-L, Liu Y (2020) Bridge between temperature and light: bottom-up synthetic route to structure-defined graphene quantum dots as a temperature probe in vitro and in cells. ACS Appl Mater Interfaces 12:22002–22011
Article
Google Scholar
Beke D, Szekrényes Z, Balogh I, Czigány Z, Kamarás K, Gali A (2013) Preparation of small silicon carbide quantum dots by wet chemical etching. J Mater Res 28:44–49. https://doi.org/10.1557/jmr.2012.223
Article
Google Scholar
Wu P, Yan X-P (2010) A simple chemical etching strategy to generate “ion-imprinted” sites on the surface of quantum dots for selective fluorescence turn-on detecting of metal ions. Chem Commun 46:7046–7048
Article
Google Scholar
Luo X, Guo B, Wang L, Deng F, Qi R, Luo S, Au C (2014) Synthesis of magnetic ion-imprinted fluorescent CdTe quantum dots by chemical etching and their visualization application for selective removal of Cd (II) from water. Colloids Surf Physicochem Eng Asp 462:186–193
Article
Google Scholar
Duan J, Song L, Zhan J (2009) One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res 2:61–68. https://doi.org/10.1007/s12274-009-9004-0
Article
Google Scholar
Qian H, Li L, Ren J (2005) One-step and rapid synthesis of high quality alloyed quantum dots (CdSe–CdS) in aqueous phase by microwave irradiation with controllable temperature. Mater Res Bull 40:1726–1736
Article
Google Scholar
Omer KM, Aziz KHH, Salih YM, Tofiq DI, Hassan AQ (2019) Photoluminescence enhancement via microwave irradiation of carbon quantum dots derived from solvothermal synthesis of l-arginine. New J Chem 43:689–695
Article
Google Scholar
Dang H, Huang L-K, Zhang Y, Wang C-F, Chen S (2016) Large-Scale Ultrasonic Fabrication of White Fluorescent Carbon Dots. Ind Eng Chem Res 55:5335–5341. https://doi.org/10.1021/acs.iecr.6b00894
Article
Google Scholar
Huang H, Cui Y, Liu M, Chen J, Wan Q, Wen Y, Deng F, Zhou N, Zhang X, Wei Y (2018) A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. J Colloid Interface Sci 532:767–773
Article
Google Scholar
Hao J, Tai G, Zhou J, Wang R, Hou C, Guo W (2020) Crystalline semiconductor boron quantum dots. ACS Appl Mater Interfaces 12:17669–17675
Article
Google Scholar
Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780
Article
Google Scholar
Xu M, Li Z, Zhu X, Hu N, Wei H, Yang Z, Zhang Y (2013) Hydrothermal/Solvothermal Synthesis of Graphene Quantum Dots and Their Biological Applications. Nano Biomed Eng 5:65–71
Article
Google Scholar
Ren X, Wei Q, Ren P, Wang Y, Peng Y (2018) Hydrothermal-solvothermal cutting integrated synthesis and optical properties of MoS2 quantum dots. Opt Mater 86:62–65
Article
Google Scholar
Mozdbar A, Nouralishahi A, Fatemi S, Mirakhori G (2018) The effect of precursor on the optical properties of carbon quantum dots synthesized by hydrothermal/solvothermal method. AIP Publishing LLC, Melville
Book
Google Scholar
Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J Am Chem Soc 128:7756–7757. https://doi.org/10.1021/ja062677d
Article
Google Scholar
Shen J, Zhu Y, Chen C, Yang X, Li C (2011) Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun 47:2580–2582
Article
Google Scholar
Zhou C, Jiang W, Via BK (2014) Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions. Colloids Surf B Biointerfaces 118:72–76
Article
Google Scholar
Xu Q, Cai W, Li W, Sreeprasad TS, He Z, Ong W-J, Li N (2018) Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Mater Today Energy 10:222–240. https://doi.org/10.1016/j.mtener.2018.09.005
Article
Google Scholar
Tian L, Yang S, Yang Y, Li J, Deng Y, Tian S, He P, Ding G, Xie X, Wang Z (2016) Green, simple and large scale synthesis of N-doped graphene quantum dots with uniform edge groups by electrochemical bottom-up synthesis. RSC Adv 6:82648–82653
Article
Google Scholar
Hang D-R, Sun D-Y, Chen C-H, Wu H-F, Chou MM, Islam SE, Sharma KH (2019) Facile bottom-up preparation of WS 2-based water-soluble quantum dots as luminescent probes for hydrogen peroxide and glucose. Nanoscale Res Lett 14:1–15
Article
Google Scholar
Xu N, Li H, Gan Y, Chen H, Li W, Zhang F, Jiang X, Shi Y, Liu J, Wen Q, Zhang H (2020) Zero-Dimensional MXene-Based Optical Devices for Ultrafast and Ultranarrow Photonics Applications. Adv Sci 7:2002209. https://doi.org/10.1002/advs.202002209
Article
Google Scholar
Lu H, Li W, Dong H, Wei M (2019) Graphene Quantum Dots for Optical Bioimaging. Small 15:1902136. https://doi.org/10.1002/smll.201902136
Article
Google Scholar
Liu Q, Sun J, Gao K, Chen N, Sun X, Ti D, Bai C, Cui R, Qu L (2020) Graphene quantum dots for energy storage and conversion: from fabrication to applications. Mater Chem Front 4:421–436. https://doi.org/10.1039/C9QM00553F
Article
Google Scholar
Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/C1CS15060J
Article
Google Scholar
Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9:102–106. https://doi.org/10.1039/C5EE03149D
Article
Google Scholar
Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a
Article
Google Scholar
Zhao Z, Xie Y (2017) Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid. J Power Sources 337:54–64. https://doi.org/10.1016/j.jpowsour.2016.10.110
Article
Google Scholar
Liu W-W, Feng Y-Q, Yan X-B, Chen J-T, Xue Q-J (2013) Superior Micro-Supercapacitors Based on Graphene Quantum Dots. Adv Funct Mater 23:4111–4122. https://doi.org/10.1002/adfm.201203771
Article
Google Scholar
Li J, Yun X, Hu Z, Xi L, Li N, Tang H, Lu P, Zhu Y (2019) Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J Mater Chem A 7:26311–26325
Article
Google Scholar
Li Z, Bu F, Wei J, Yao W, Wang L, Chen Z, Pan D, Wu M (2018) Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon. Nanoscale 10:22871–22883
Article
Google Scholar
Tan H, Cho H-W, Wu J-J (2018) Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries. J Power Sources 388:11–18. https://doi.org/10.1016/j.jpowsour.2018.03.066
Article
Google Scholar
Wang B, Xie Y, Liu T, Luo H, Wang B, Wang C, Wang L, Wang D, Dou S, Zhou Y (2017) LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy 42:363–372. https://doi.org/10.1016/j.nanoen.2017.11.040
Article
Google Scholar
Huang S, Wang M, Jia P, Wang B, Zhang J, Zhao Y (2019) N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Mater 20:225–233. https://doi.org/10.1016/j.ensm.2018.11.024
Article
Google Scholar
Li X, Hu K, Tang R, Zhao K, Ding Y (2016) CuS quantum dot modified carbon aerogel as an immobilizer for lithium polysulfides for high-performance lithium–sulfur batteries. RSC Adv 6:71319–71327. https://doi.org/10.1039/C6RA11990E
Article
Google Scholar
Chakrabarty N, Dey A, Krishnamurthy S, Chakraborty AK (2021) CeO2/Ce2O3 quantum dot decorated reduced graphene oxide nanohybrid as electrode for supercapacitor. Appl Surf Sci 536:147960. https://doi.org/10.1016/j.apsusc.2020.147960
Article
Google Scholar
Sun J, Sun Y, Oh JAS, Gu Q, Zheng W, Goh M, Zeng K, Cheng Y, Lu L (2021) Insight into the structure-capacity relationship in biomass derived carbon for high-performance sodium-ion batteries. J Energy Chem 62:497–504. https://doi.org/10.1016/j.jechem.2021.04.009
Article
Google Scholar
Liu S, Cao X, Zhang Y, Wang K, Su Q, Chen J, He Q, Liang S, Cao G, Pan A (2020) Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries. J Mater Chem A 8:18872–18879. https://doi.org/10.1039/D0TA04307A
Article
Google Scholar
Sun J, Tu W, Chen C, Plewa A, Ye H, Sam Oh JA, He L, Wu T, Zeng K, Lu L (2019) Chemical Bonding Construction of Reduced Graphene Oxide-Anchored Few-Layer Bismuth Oxychloride for Synergistically Improving Sodium-Ion Storage. Chem Mater 31:7311–7319. https://doi.org/10.1021/acs.chemmater.9b01828
Article
Google Scholar
Sun J, Ye H, Oh JAS, Plewa A, Sun Y, Wu T, Sun Q, Zeng K, Lu L (2021) Elevating the discharge plateau of prussian blue analogs through low-spin Fe redox induced intercalation pseudocapacitance. Energy Storage Mater 43:182–189. https://doi.org/10.1016/j.ensm.2021.09.004
Article
Google Scholar
Shi R, Li Z, Yu H, Shang L, Zhou C, Waterhouse GIN, Wu L-Z, Zhang T (2017) Effect of Nitrogen Doping Level on the Performance of N-Doped Carbon Quantum Dot/TiO2 Composites for Photocatalytic Hydrogen Evolution. Chem Sus Chem 10:4650–4656. https://doi.org/10.1002/cssc.201700943
Article
Google Scholar
Cao Y, Zhou H, Qian R-C, Liu J, Ying Y-L, Long Y-T (2017) Analysis of the electron transfer properties of carbon quantum dots on gold nanorod surfaces via plasmonic resonance scattering spectroscopy. Chem Commun 53:5729–5732. https://doi.org/10.1039/C7CC01464C
Article
Google Scholar
Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S-T, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974
Article
Google Scholar
Dai L (2017) Carbon-based catalysts for metal-free electrocatalysis. Curr Opin Electrochem 4:18–25. https://doi.org/10.1016/j.coelec.2017.06.004
Article
Google Scholar
Xie S, Zhang Q, Liu G, Wang Y (2016) Photocatalytic and photoelectrocatalytic reduction of CO 2 using heterogeneous catalysts with controlled nanostructures. Chem Commun 52:35–59. https://doi.org/10.1039/C5CC07613G
Article
Google Scholar
Cho J, Suwandaratne NS, Razek S, Choi Y-H, Piper LFJ, Watson DF, Banerjee S (2020) Elucidating the Mechanistic Origins of Photocatalytic Hydrogen Evolution Mediated by MoS2/CdS Quantum-Dot Heterostructures. ACS Appl Mater Interfaces 12:43728–43740. https://doi.org/10.1021/acsami.0c12583
Article
Google Scholar
Lu S-M, Li Y-J, Zhang J-F, Wang Y, Ying Y-L, Long Y-T (2019) Monitoring hydrogen evolution reaction catalyzed by MoS2 quantum dots on a single nanoparticle electrode. Anal Chem 91:10361–10365
Article
Google Scholar
Enright MJ, Gilbert-Bass K, Sarsito H, Cossairt BM (2019) Photolytic C–O Bond Cleavage with Quantum Dots. Chem Mater 31:2677–2682
Article
Google Scholar
Elsayed MH, Jayakumar J, Abdellah M, Mansoure TH, Zheng K, Elewa AM, Chang C-L, Ting L-Y, Lin W-C, Yu H, Wang W-H, Chung C-C, Chou H-H (2021) Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts. Appl Catal B Environ 283:119659. https://doi.org/10.1016/j.apcatb.2020.119659
Article
Google Scholar
Malček M, Bučinský L (2020) On the hydrogen storage performance of Cu-doped and Cu-decorated graphene quantum dots: a computational study. Theor Chem Acc 139:167. https://doi.org/10.1007/s00214-020-02680-2
Article
Google Scholar
Tachikawa H, Iyama T (2019) Mechanism of Hydrogen Storage in the Graphene Nanoflake–Lithium–H2 System. J Phys Chem C 123:8709–8716. https://doi.org/10.1021/acs.jpcc.9b01152
Article
Google Scholar
Manthiram A, Fu Y, Su Y-S (2013) Challenges and Prospects of Lithium–Sulfur Batteries. Acc Chem Res 46:1125–1134. https://doi.org/10.1021/ar300179v
Article
Google Scholar
Cai D, Wang L, Li L, Zhang Y, Li J, Chen D, Tu H, Han W (2019) Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox kinetics enhancement for improved lithium–sulfur battery performance. J Mater Chem A 7:806–815. https://doi.org/10.1039/C8TA09906E
Article
Google Scholar
Zhang Q, Sun C, Fan L, Zhang N, Sun K (2019) Iron fluoride vertical nanosheets array modified with graphene quantum dots as long-life cathode for lithium ion batteries. Chem Eng J 371:245–251. https://doi.org/10.1016/j.cej.2019.04.073
Article
Google Scholar
Ke G, Chen H, He J, Wu X, Gao Y, Li Y, Mi H, Zhang Q, He C, Ren X (2021) Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries. Chem Eng J 403:126251. https://doi.org/10.1016/j.cej.2020.126251
Article
Google Scholar
Ding H, Zhang Q, Liu Z, Wang J, Ma R, Fan L, Wang T, Zhao J, Ge J, Lu X, Yu X, Lu B (2018) TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries. Electrochimica Acta 284:314–320. https://doi.org/10.1016/j.electacta.2018.07.167
Article
Google Scholar
Wang J, Wang Z, Zhu Z (2017) Synergetic effect of Ni(OH)2 cocatalyst and CNT for high hydrogen generation on CdS quantum dot sensitized TiO2 photocatalyst. Appl Catal B Environ 204:577–583. https://doi.org/10.1016/j.apcatb.2016.12.008
Article
Google Scholar
Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y (2010) A Facile One-step Method to Produce Graphene–CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials. Adv Mater 22:103–106. https://doi.org/10.1002/adma.200901920
Article
Google Scholar
Liang X, Garsuch A, Nazar LF (2015) Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem 127:3979–3983
Article
Google Scholar
Wild M, O’Neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer GJ (2015) Lithium sulfur batteries, a mechanistic review. Energy Environ Sci 8:3477–3494. https://doi.org/10.1039/C5EE01388G
Article
Google Scholar
Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy 1:16132. https://doi.org/10.1038/nenergy.2016.132
Article
Google Scholar
Xu Z-L, Lin S, Onofrio N, Zhou L, Shi F, Lu W, Kang K, Zhang Q, Lau SP (2018) Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat Commun 9:4164. https://doi.org/10.1038/s41467-018-06629-9
Article
Google Scholar
Gao X-T, Xie Y, Zhu X-D, Sun K-N, Xie X-M, Liu Y-T, Yu J-Y, Ding B (2018) Ultrathin MXene Nanosheets Decorated with TiO2 Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small 14:1802443. https://doi.org/10.1002/smll.201802443
Article
Google Scholar
Hu Y, Chen W, Lei T, Zhou B, Jiao Y, Yan Y, Du X, Huang J, Wu C, Wang X, Wang Y, Chen B, Xu J, Wang C, Xiong J (2019) Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries. Adv Energy Mater 9:1802955. https://doi.org/10.1002/aenm.201802955
Article
Google Scholar
Li W, Yang Y, Zhang G, Zhang Y-W (2015) Ultrafast and Directional Diffusion of Lithium in Phosphorene for High-Performance Lithium-Ion Battery. Nano Lett 15:1691–1697. https://doi.org/10.1021/nl504336h
Article
Google Scholar
Sun J, Sun Y, Pasta M, Zhou G, Li Y, Liu W, Xiong F, Cui Y (2016) Entrapment of Polysulfides by a Black-Phosphorus-Modified Separator for Lithium–Sulfur Batteries. Adv Mater 28:9797–9803. https://doi.org/10.1002/adma.201602172
Article
Google Scholar
Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochimica Acta 129:55–61. https://doi.org/10.1016/j.electacta.2014.02.077
Article
Google Scholar
Liu J, Yuan L, Yuan K, Li Z, Hao Z, Xiang J, Huang Y (2016) SnO2 as a high-efficiency polysulfide trap in lithium–sulfur batteries. Nanoscale 8:13638–13645. https://doi.org/10.1039/C6NR02345B
Article
Google Scholar
Pang Y, Wei J, Wang Y, Xia Y (2018) Synergetic Protective Effect of the Ultralight MWCNTs/NCQDs Modified Separator for Highly Stable Lithium–Sulfur Batteries. Adv Energy Mater 8:1702288. https://doi.org/10.1002/aenm.201702288
Article
Google Scholar
Yu B, Chen D, Wang Z, Qi F, Zhang X, Wang X, Hu Y, Wang B, Zhang W, Chen Y, He J, He W (2020) Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries. Chem Eng J 399:125837. https://doi.org/10.1016/j.cej.2020.125837
Article
Google Scholar
Chung S-H, Manthiram A (2014) High-Performance Li–S Batteries with an Ultra-lightweight MWCNT-Coated Separator. J Phys Chem Lett 5:1978–1983. https://doi.org/10.1021/jz5006913
Article
Google Scholar
Liu Y, Liu Q, Xin L, Liu Y, Yang F, Stach EA, Xie J (2017) Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy 2:17083. https://doi.org/10.1038/nenergy.2017.83
Article
Google Scholar
Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206. https://doi.org/10.1038/nnano.2017.16
Article
Google Scholar
Ye H, Sun J, Zhang S, Lin H, Zhang T, Yao Q, Lee JY (2019) Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li–S Batteries. ACS Nano 13:14208–14216. https://doi.org/10.1021/acsnano.9b07121
Article
Google Scholar
Jia H, Cai Y, Lin J, Liang H, Qi J, Cao J, Feng J, Fei W (2018) Heterostructural Graphene Quantum Dot/MnO2 Nanosheets toward High-Potential Window Electrodes for High-Performance Supercapacitors. Adv Sci 5:1700887. https://doi.org/10.1002/advs.201700887
Article
Google Scholar
Zahir N, Magri P, Luo W, Gaumet J-J, Pierrat P (2021) Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices. Energy Environ Mater 5:201–214. https://doi.org/10.1002/eem2.12167
Article
Google Scholar
Noori A, El-Kady MF, Rahmanifar MS, Kaner RB, Mousavi MF (2019) Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem Soc Rev 48:1272–1341. https://doi.org/10.1039/C8CS00581H
Article
Google Scholar
Qing Y, Jiang Y, Lin H, Wang L, Liu A, Cao Y, Sheng R, Guo Y, Fan C, Zhang S, Jia D, Fan Z (2019) Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J Mater Chem A 7:6021–6027. https://doi.org/10.1039/C8TA11620B
Article
Google Scholar
Ren K, Liu Z, Wei T, Fan Z (2021) Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors. Nano-Micro Lett 13:129–160. https://doi.org/10.1007/s40820-021-00642-2
Article
Google Scholar
Zhang R, Shen W, Zhong M, Zhang J, Guo S (2021) Carbon Nanofibers Cross-Linked and Decorated with Graphene Quantum Dots as Binder-Free Electrodes for Flexible Supercapacitors. J Phys Chem C 125:143–151. https://doi.org/10.1021/acs.jpcc.0c08803
Article
Google Scholar
Zhao J, Zhu J, Li Y, Wang L, Dong Y, Jiang Z, Fan C, Cao Y, Sheng R, Liu A, Zhang S, Song H, Jia D, Fan Z (2020) Graphene Quantum Dot Reinforced Electrospun Carbon Nanofiber Fabrics with High Surface Area for Ultrahigh Rate Supercapacitors. ACS Appl Mater Interfaces 12:11669–11678. https://doi.org/10.1021/acsami.9b22408
Article
Google Scholar
Liu Y, Roy S, Sarkar S, Xu J, Zhao Y, Zhang J (2021) A review of carbon dots and their composite materials for electrochemical energy technologies. Carbon Energy 3:795–826. https://doi.org/10.1002/cey2.134
Article
Google Scholar
Zhang YDJZS, Fan Z (2020) Application of Carbon-/Graphene Quantum Dots for Supercapacitors. Acta Phys Chim Sin 36:1903052
Article
Google Scholar
Kharangarh PR, Ravindra NM, Rawal R, Singh A, Gupta V (2021) Graphene quantum dots decorated on spinel nickel cobaltite nanocomposites for boosting supercapacitor electrode material performance. J Alloys Compd 876:159990. https://doi.org/10.1016/j.jallcom.2021.159990
Article
Google Scholar
Qi F, Shao L, Shi X, Wu F, Huang H, Sun Z, Trukhanov A (2021) “Carbon quantum dots-glue” enabled high-capacitance and highly stable nickel sulphide nanosheet electrode for supercapacitors. J Colloid Interface Sci 601:669–677. https://doi.org/10.1016/j.jcis.2021.05.099
Article
Google Scholar
Ji Z, Ma D, Dai W, Liu K, Shen X, Zhu G, Nie Y, Pasang D, Yuan A (2021) Anchoring nitrogen-doped carbon quantum dots on nickel carbonate hydroxide nanosheets for hybrid supercapacitor applications. J Colloid Interface Sci 590:614–621. https://doi.org/10.1016/j.jcis.2021.01.102
Article
Google Scholar
Zhu Y, Wu Z, Jing M, Hou H, Yang Y, Zhang Y, Yang X, Song W, Jia X, Ji X (2015) Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J Mater Chem A 3:866–877. https://doi.org/10.1039/C4TA05507A
Article
Google Scholar
Ganganboina AB, Park EY, Doong R-A (2020) Boosting the energy storage performance of V2O5 nanosheets by intercalating conductive graphene quantum dots. Nanoscale 12:16944–16955. https://doi.org/10.1039/D0NR04362A
Article
Google Scholar
Wei J-S, Song T-B, Zhang P, Zhu Z-Y, Dong X-Y, Niu X-Q, Xiong H-M (2020) Integrating Carbon Dots with Porous Hydrogels to Produce Full Carbon Electrodes for Electric Double-Layer Capacitors. ACS Appl Energy Mater 3:6907–6914. https://doi.org/10.1021/acsaem.0c00990
Article
Google Scholar
Lv H, Gao X, Xu Q, Liu H, Wang Y-G, Xia Y (2017) Carbon Quantum Dot-Induced MnO2 Nanowire Formation and Construction of a Binder-Free Flexible Membrane with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. ACS Appl Mater Interfaces 9:40394–40403. https://doi.org/10.1021/acsami.7b14761
Article
Google Scholar
Zhang S, Zhu J, Qing Y, Wang L, Zhao J, Li J, Tian W, Jia D, Fan Z (2018) Ultramicroporous Carbons Puzzled by Graphene Quantum Dots: Integrated High Gravimetric, Volumetric, and Areal Capacitances for Supercapacitors. Adv Funct Mater 28:1805898. https://doi.org/10.1002/adfm.201805898
Article
Google Scholar
Li Z, Cao L, Qin P, Liu X, Chen Z, Wang L, Pan D, Wu M (2018) Nitrogen and oxygen co-doped graphene quantum dots with high capacitance performance for micro-supercapacitors. Carbon 139:67–75. https://doi.org/10.1016/j.carbon.2018.06.042
Article
Google Scholar
Luo P, Guan X, Yu Y, Li X, Yan F (2019) Hydrothermal Synthesis of Graphene Quantum Dots Supported on Three-Dimensional Graphene for Supercapacitors. Nanomaterials 9:201–210. https://doi.org/10.3390/nano9020201
Article
Google Scholar
Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7:637–644. https://doi.org/10.1007/s10008-003-0395-7
Article
Google Scholar
Wei J-S, Ding H, Zhang P, Song Y-F, Chen J, Wang Y-G, Xiong H-M (2016) Carbon Dots/NiCo2O4 Nanocomposites with Various Morphologies for High Performance Supercapacitors. Small 12:5927–5934. https://doi.org/10.1002/smll.201602164
Article
Google Scholar
Liu W, Zhang M, Li M, Li B, Zhang W, Li G, Xiao M, Zhu J, Yu A, Chen Z (2020) Advanced Electrode Materials Comprising of Structure-Engineered Quantum Dots for High-Performance Asymmetric Micro-Supercapacitors. Adv Energy Mater 10:1903724. https://doi.org/10.1002/aenm.201903724
Article
Google Scholar
Lee K, Lee H, Shin Y, Yoon Y, Kim D, Lee H (2016) Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. Nano Energy 26:746–754
Article
Google Scholar
Li X, Rui M, Song J, Shen Z, Zeng H (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25:4929–4947
Article
Google Scholar
Lu H, Tournet J, Dastafkan K, Liu Y, Ng YH, Karuturi SK, Zhao C, Yin Z (2021) Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chem Rev. 121:10271–10366. https://doi.org/10.1021/acs.chemrev.0c01328
Article
Google Scholar
Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ (2014) Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angew Chem Int Ed 53:102–121. https://doi.org/10.1002/anie.201306588
Article
Google Scholar
Asefa T, Tang C, Ramírez-Hernández M (2021) Nanostructured Carbon Electrocatalysts for Energy Conversions. Small n/a:2007136. https://doi.org/10.1002/smll.202007136
Article
Google Scholar
Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16:16–22. https://doi.org/10.1038/nmat4834
Article
Google Scholar
Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535. https://doi.org/10.1039/C3CS60378D
Article
Google Scholar
Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, Stoll T, Llobet A (2014) Molecular artificial photosynthesis. Chem Soc Rev 43:7501–7519. https://doi.org/10.1039/C3CS60405E
Article
Google Scholar
Liu K, Song C, Subramani V (2010) Hydrogen and syngas production and purification technologies. Wiley, Hoboken
Google Scholar
Fu Y, Dong C-L, Lee W-Y, Chen J, Guo P, Zhao L, Shen S (2016) Nb-Doped Hematite Nanorods for Efficient Solar Water Splitting: Electronic Structure Evolution versus Morphology Alteration. Chem Nano Mat 2:704–711. https://doi.org/10.1002/cnma.201600024
Article
Google Scholar
Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Nano-photocatalytic Materials: Possibilities and Challenges. Adv Mater 24:229–251. https://doi.org/10.1002/adma.201102752
Article
Google Scholar
Zhang P, Zhang J, Gong J (2014) Tantalum-based semiconductors for solar water splitting. Chem Soc Rev 43:4395–4422. https://doi.org/10.1039/C3CS60438A
Article
Google Scholar
Rao VN, Reddy NL, Kumari MM, Cheralathan KK, Ravi P, Sathish M, Neppolian B, Reddy KR, Shetti NP, Prathap P, Aminabhavi TM, Shankar MV (2019) Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review. J Environ Manage 248:109246. https://doi.org/10.1016/j.jenvman.2019.07.017
Article
Google Scholar
Yu H, Zhao Y, Zhou C, Shang L, Peng Y, Cao Y, Wu L-Z, Tung C-H, Zhang T (2014) Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A 2:3344–3351. https://doi.org/10.1039/C3TA14108J
Article
Google Scholar
Shi X-F, Xia X-Y, Cui G-W, Deng N, Zhao Y-Q, Zhuo L-H, Tang B (2015) Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity. Appl Catal B Environ 163:123–128. https://doi.org/10.1016/j.apcatb.2014.07.054
Article
Google Scholar
Wu H, Li X, Tung C, Wu L (2019) Semiconductor quantum dots: an emerging candidate for CO2 photoreduction. Adv Mater 31:1900709
Article
Google Scholar
Wu S, Sun J, Li Q, Hood ZD, Yang S, Su T, Peng R, Wu Z, Sun W, Kent PRC, Jiang B, Chisholm MF (2020) Effects of Surface Terminations of 2D Bi2WO6 on Photocatalytic Hydrogen Evolution from Water Splitting. ACS Appl Mater Interfaces 12:20067–20074. https://doi.org/10.1021/acsami.0c01802
Article
Google Scholar
Su T, Shao Q, Qin Z, Guo Z, Wu Z (2018) Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catal 8:2253–2276. https://doi.org/10.1021/acscatal.7b03437
Article
Google Scholar
Low J, Cao S, Yu J, Wageh S (2014) Two-dimensional layered composite photocatalysts. Chem Commun 50:10768–10777. https://doi.org/10.1039/C4CC02553A
Article
Google Scholar
Zhang M, Wang X (2014) Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ Sci 7:1902–1906. https://doi.org/10.1039/C3EE44189J
Article
Google Scholar
Heard CJ, Čejka J, Opanasenko M, Nachtigall P, Centi G, Perathoner S (2019) 2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. Adv Mater 31:1801712. https://doi.org/10.1002/adma.201801712
Article
Google Scholar
Sugimoto H, Zhou H, Takada M, Fushimi J, Fujii M (2020) Visible-light driven photocatalytic hydrogen generation by water-soluble all-inorganic core–shell silicon quantum dots. J Mater Chem A 8:15789–15794. https://doi.org/10.1039/D0TA01071E
Article
Google Scholar
Gao R, Cheng B, Fan J, Yu J, Ho W (2021) ZnxCd1–xS quantum dot with enhanced photocatalytic H2-production performance. Chin J Catal 42:15–24. https://doi.org/10.1016/S1872-2067(20)63614-2
Article
Google Scholar
Xiang X, Zhu B, Cheng B, Yu J, Lv H (2020) Enhanced Photocatalytic H2-Production Activity of CdS Quantum Dots Using Sn2+ as Cocatalyst under Visible Light Irradiation. Small 16:2001024. https://doi.org/10.1002/smll.202001024
Article
Google Scholar
Li Y, Ding L, Guo Y, Liang Z, Cui H, Tian J (2019) Boosting the Photocatalytic Ability of g-C3N4 for Hydrogen Production by Ti3C2 MXene Quantum Dots. ACS Appl Mater Interfaces 11:41440–41447. https://doi.org/10.1021/acsami.9b14985
Article
Google Scholar
Yang F, Liu D, Li Y, Ning S, Cheng L, Ye J (2021) Solid-state synthesis of ultra-small freestanding amorphous MoP quantum dots for highly efficient photocatalytic H2 production. Chem Eng J 406:126838. https://doi.org/10.1016/j.cej.2020.126838
Article
Google Scholar
Wang P, Wang M, Zhang J, Li C, Xu X, Jin Y (2017) Shell Thickness Engineering Significantly Boosts the Photocatalytic H2 Evolution Efficiency of CdS/CdSe Core/Shell Quantum Dots. ACS Appl Mater Interfaces 9:35712–35720. https://doi.org/10.1021/acsami.7b07211
Article
Google Scholar
A. R. SR, Mane RS, Wilson HM, Jha N (2021) Correction: CdSe quantum dot/white graphene hexagonal porous boron nitride sheet (h-PBNs) heterostructure photocatalyst for solar driven H2 production. J Mater Chem C 9:9331. https://doi.org/10.1039/D1TC90144C
Article
Google Scholar
Gao F, Zhao Y, Zhang L, Wang B, Wang Y, Huang X, Wang K, Feng W, Liu P (2018) Well dispersed MoC quantum dots in ultrathin carbon films as efficient co-catalysts for photocatalytic H2 evolution. J Mater Chem A 6:18979–18986. https://doi.org/10.1039/C8TA06029K
Article
Google Scholar
Lei Y, Yang C, Hou J, Wang F, Min S, Ma X, Jin Z, Xu J, Lu G, Huang K-W (2017) Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots. Appl Catal B Environ 216:59–69. https://doi.org/10.1016/j.apcatb.2017.05.063
Article
Google Scholar
Huang H, Xu B, Tan Z, Jiang Q, Fang S, Li L, Bi J, Wu L (2020) A facile in situ growth of CdS quantum dots on covalent triazine-based frameworks for photocatalytic H2 production. J Alloys Compd 833:155057. https://doi.org/10.1016/j.jallcom.2020.155057
Article
Google Scholar
Yan T, Li N, Jiang Z, Guan W, Qiao Z, Huang B (2018) Self-sacrificing template synthesis of CdS quantum dots/Cd-Hap composite photocatalysts for excellent H2 production under visible light. Int J Hydrog Energy 43:20616–20626. https://doi.org/10.1016/j.ijhydene.2018.09.093
Article
Google Scholar
Xue F, Liu M, Cheng C, Deng J, Shi J (2018) Localized NiS2 Quantum Dots on g-C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production from Water. Chem Cat Chem 10:5441–5448
Google Scholar
Kong L, Ji Y, Dang Z, Yan J, Li P, Li Y (2018) S. (Frank) Liu, g-C3N4 Loading Black Phosphorus Quantum Dot for Efficient and Stable Photocatalytic H2 Generation under Visible Light. Adv Funct Mater 28:1800668. https://doi.org/10.1002/adfm.201800668
Article
Google Scholar
Ma B, Xu H, Lin K, Li J, Zhan H, Liu W, Li C (2016) Mo2C as Non-Noble Metal Co-Catalyst in Mo2C/CdS Composite for Enhanced Photocatalytic H2 Evolution under Visible Light Irradiation. Chem Sus Chem 9:820–824. https://doi.org/10.1002/cssc.201501652
Article
Google Scholar
Liu F, Wang Z, Weng Y, Shi R, Ma W, Chen Y (2021) Black Phosphorus Quantum Dots Modified CdS Nanowires with Efficient Charge Separation for Enhanced Photocatalytic H2 Evolution. Chem Cat Chem 13:1355–1361. https://doi.org/10.1002/cctc.202001847
Article
Google Scholar
Wang J, Chen Y, Zhou W, Tian G, Xiao Y, Fu H, Fu H (2017) Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution. J Mater Chem A 5:8451–8460. https://doi.org/10.1039/C7TA01914A
Article
Google Scholar
Jiao Y, Huang Q, Wang J, He Z, Li Z (2019) A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution. Appl Catal B Environ 247:124–132. https://doi.org/10.1016/j.apcatb.2019.01.073
Article
Google Scholar
Shi R, Liu F, Wang Z, Weng Y, Chen Y (2019) Black/red phosphorus quantum dots for photocatalytic water splitting: from a type I heterostructure to a Z-scheme system. Chem Commun 55:12531–12534. https://doi.org/10.1039/C9CC06146K
Article
Google Scholar
Sharma V, Kagdada HL, Wang J, Jha PK (2020) Hydrogen adsorption on pristine and platinum decorated graphene quantum dot: A first principle study. Int J Hydrog Energy 45:23977–23987. https://doi.org/10.1016/j.ijhydene.2019.09.021
Article
Google Scholar
Xiang C, Li A, Yang S, Lan Z, Xie W, Tang Y, Xu H, Wang Z, Gu H (2019) Enhanced hydrogen storage performance of graphene nanoflakes doped with Cr atoms: a DFT study. RSC Adv 9:25690–25696. https://doi.org/10.1039/C9RA04589A
Article
Google Scholar