Skip to main content
Log in

Latex membranes with methylene blue dye for antimicrobial photodynamic therapy

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The search for new materials that can be applied in the treatment of injured human tissues has led to the development of new dressings. Membranes have potential as dressing materials because they can be fitted to and interact with the tissue surface. In this study, we analyze the morphological properties and wettability of latex membranes, along with the incorporation of the photosensitizer methylene blue, in the context of the utility of the membranes in curative applications involving photodynamic therapy (PDT). It was observed that deposition of the photosensitizer into latex membranes increased both the surface roughness and wettability. Antifungal testing indicated that antimicrobial PDT assisted by the latex membranes incorporating methylene blue effectively inactivated Candida albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burn prevention: success stories and lessons learned - World Health Organization - March 2011 (ISBN 978 92 4 150118 7). https://www.who.int/publications/i/item/9789241501187

  2. Khoo, T. L., Halim, A. S., Saad, A. Z. M., & Dorai, A. A. (2010). The application of glycerol-preserved skin allograft in the treatment of burn injuries: An analysis based on indications. Burns, 36, 897–904. https://doi.org/10.1016/j.burns.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  3. Church, D., Elsayed, S., Reid, O., Winston, B., & Lindsay, R. (2006). Burn wound infections. Clinical Microbiology Reviews, 19, 403–434. https://doi.org/10.1128/CMR.19.2.403-434.2006

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wasiak, J., Cleland, H., & Campbell, F. (2008). Dressings for superficial and partial thickness burns. In J. Wasiak (Ed.), Cochrane database systematic reviews. Chichester: Wiley. https://doi.org/10.1002/14651858.CD002106.pub3

    Chapter  Google Scholar 

  5. Wattanakaroon, W., Akanitkul, P., Kaowkanya, W., & Phoudee, W. (2017). Albumin-natural rubber latex composite as a dermal wound dressing. Materials Today: Proceedings, 4, 6633–6640. https://doi.org/10.1016/j.matpr.2017.06.178

    Article  Google Scholar 

  6. Silva, A. J., Silva, J. R., de Souza, N. C., & Souto, P. C. S. (2014). Membranes from latex with propolis for biomedical applications. Materials Letters, 116, 235–238. https://doi.org/10.1016/j.matlet.2013.11.045

    Article  CAS  Google Scholar 

  7. Krupp, T., dos Santos, B. D., Gama, L. A., Silva, J. R., Arrais-Silva, W. W., de Souza, N. C., Américo, M. F., & de Souza Souto, P. C. (2019). Natural rubber—propolis membrane improves wound healing in second-degree burning model. International Journal of Biological Macromolecules, 131, 980–988. https://doi.org/10.1016/j.ijbiomac.2019.03.147

    Article  CAS  PubMed  Google Scholar 

  8. Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G., & Roncucci, G. (2006). Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers in Surgery and Medicine, 38, 468–481. https://doi.org/10.1002/lsm.20361

    Article  PubMed  Google Scholar 

  9. Mroz, P., Huang, Y., Szokalska, A., Zhiyentayev, T., Janjua, S., Nifli, A.-P., Sherwood, M. E., Ruzié, C., Borbas, K. E., Fan, D., Krayer, M., Balasubramanian, T., Yang, E., Kee, H., Kirmaier, C., Diers, J., Bocian, D., Holten, D., Lindsey, J. S., & Hamblin, M. R. (2010). Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. The FASEB Journal, 24, 3160–3170. https://doi.org/10.1096/fj.09-152587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, K.-H., Wang, K.-K., Oh, S.-L., Im, J.-E., Kim, B.-J., Park, J.-C., Choi, D., Kim, H.-K., & Kim, Y.-R. (2010). Singlet oxygen generating nanolayer coatings on NiTi alloy for photodynamic application. Surface & Coatings Technology, 205, S62–S67. https://doi.org/10.1016/j.surfcoat.2010.04.033

    Article  CAS  Google Scholar 

  11. Moore, E. C., Padiglione, A. A., Wasiak, J., Paul, E., & Cleland, H. (2010). Candida in burns: Risk factors and outcomes. Journal of Burn Care & Research, 31, 257–263. https://doi.org/10.1097/BCR.0b013e3181d0f536

    Article  Google Scholar 

  12. Acar, A., Uygur, F., Diktaş, H., Evinç, R., Lkür, E. Ü., Öncül, O., & Görenek, L. (2011). Comparison of silver-coated dressing (ActicoatW), chlorhexidine acetate 0.5% (BactigrassW) and nystatin for topical antifungal effect in Candida albicans-contaminated, full-skin-thickness rat burn wounds. Burns, 37, 882–885. https://doi.org/10.1016/j.burns.2011.01.024

    Article  PubMed  Google Scholar 

  13. Gomes, D. J. C., de Souza, N. C., & Silva, J. R. (2013). Using a monocular optical microscope to assemble a wetting contact angle analyser. Measurement, 46, 3623–3627. https://doi.org/10.1016/j.measurement.2013.07.010

    Article  Google Scholar 

  14. Costa Pedro, M. F., Kalck, A. S., dos Santos, K. F., Sousa, M. S., Romio, K. B., Souto, P. C. S., Silva, J. R., & de Souza, N. C. (2018). Immobilization of triclosan and erythrosine in layer-by-layer films applied to inactivation of microorganisms. Photodiagnosis Photodynamic Therapy, 22, 158–165. https://doi.org/10.1016/j.pdpdt.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  15. Peloi, L. S., Soares, R. R. S., Biondo, C. E. G., Souza, V. R., & Hioka, N. (2008). Elza Kimura, Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. Journal of Biosciences, 33, 231–237. https://doi.org/10.1007/s12038-008-0040-9

    Article  CAS  PubMed  Google Scholar 

  16. Tardivo, J. P., Giglio, A. D., de Oliveira, C. S., Gabrielli, D. S., Junqueira, H. C., Tada, D. B., Severino, D., de Fátima Turchiello, R., & Baptista, M. S. (2005). Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagnosis and Photodynamic Therapy, 2, 175–191. https://doi.org/10.1016/S1572-1000(05)00097-9

    Article  CAS  PubMed  Google Scholar 

  17. Pasquetti, M., Chiavassa, E., Tizzani, P., Danesi, P., & APeano, . (2015). Agar diffusion procedures for susceptibility testing of malassezia pachydermatis: evaluation of Mueller-Hinton agar plus 2 % glucose and 0.5 µg/ml methylene blue as the test medium. Mycopathologia, 180, 153–158. https://doi.org/10.1007/s11046-015-9913-2

    Article  CAS  PubMed  Google Scholar 

  18. Tolnai, S. (1975). A method for viable cell count. Tissue Culture Association Manual, 1, 37–38. https://doi.org/10.1007/BF00914435

    Article  Google Scholar 

  19. Chermsirivathana, S. (1952). A rapid method of staining for fungus and monilial infection. The Journal of Investigative Dermatology, 19, 7. https://doi.org/10.1038/jid.1952.60

    Article  CAS  PubMed  Google Scholar 

  20. Webb, R. J., Berger, L., Skerratt, L. F., & Roberts, A. A. (2019). A rapid and inexpensive viability assay for zoospores and zoosporangia of Batrachochytrium dendrobatidis. Journal of Microbiological Methods, 165, 105688. https://doi.org/10.1016/j.mimet.2019.105688

    Article  CAS  PubMed  Google Scholar 

  21. Ge, X., Gao, M., Situ, B., Feng, W., He, B., He, X., Li, S., Ou, Z., Zhong, Y., Lin, Y., Ye, X., Hu, X., Tang, B. Z., & Zheng, L. (2020). One-step, rapid fluorescence sensing of fungal viability based on a bioprobe with aggregation-induced emission characteristics. Materials Chemistry Frontiers. https://doi.org/10.1039/C9QM00732F

    Article  Google Scholar 

  22. Kwolek-Mirek, M., & Zadrag-Tecza, R. (2014). Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Research, 14, 1068. https://doi.org/10.1111/1567-1364.12202

    Article  CAS  PubMed  Google Scholar 

  23. dos Santos, K. F., Sousa, M. S., Valverde, J. V. P., Olivati, C. A., Souto, P. C. S., Silva, J. R., & de Souza, N. C. (2019). Fractal analysis and mathematical models for the investigation of photothermal inactivation of Candida albicans using carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 180, 393–400. https://doi.org/10.1016/j.colsurfb.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  24. Romio, K. B., dos Santos, K. F., da Silva, R. J., Pedro, M. F. C., Kalck, A. S., da Silva Sousa, M., Possamai, L. M., Souto, P. C. S., Silva, J. R., & de Souza, N. C. (2017). Incorporation of triclosan and acridine orange into liposomes for evaluating the susceptibility of Candida albicans. Journal Photochemistry Photobiology B: Biology, 173, 514–521. https://doi.org/10.1016/j.jphotobiol.2017.06.034

    Article  CAS  Google Scholar 

  25. Strugger, S. (1948). Fluorescence microscope examination of bacteria in soil. Canadian Journal Research, 26c(2), 188–193. https://doi.org/10.1139/cjr48c-019

    Article  Google Scholar 

  26. Guo, R., McGoverin, C., Swift, S., & Vanholsbeeck, F. (2017). A rapid and low-cost estimation of bacteria counts in solutionusing fluorescence spectroscopy. Analytical and Bioanalytical Chemistry, 409, 3959–3967. https://doi.org/10.1007/s00216-017-0347-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martino, R. F., Davicino, R. C., Mattar, M. A., Casali, Y. A., Correa, S. G., & Micalizzi, B. (2011). In vivo effect of three fractions of Larrea divaricata Cav (jarilla) on the innate immune system: Macrophage response against Candida albicans. Mycoses, 54, e718–e725. https://doi.org/10.1111/j.1439-0507.2010.02006.x

    Article  PubMed  Google Scholar 

  28. Paramanantham, P., Antony, A. P., Sruthil Lal, S. B., Sharan, A., Syed, A., Ahmed, M., Alarfaj, A. A., Busi, S., Maaza, M., & Kaviyarasu, K. (2018). Antimicrobial photodynamic inactivation of fungal biofilm using amino functionalized mesoporus silica-rose bengal nanoconjugate against Candida albicans. Scientific African. https://doi.org/10.1016/j.sciaf.2018.e00007

    Article  Google Scholar 

  29. Chick, E. W. (1961). Acridine orange fluorescent stain for fungi. Archives of Dermatology, 83, 305–309. https://doi.org/10.1001/archderm.1961.01580080135015

    Article  CAS  PubMed  Google Scholar 

  30. Denny, M. W. (2008). The Intrigue of the Interface. Science, 320, 931–934. https://doi.org/10.1126/science.1156023

    Article  CAS  Google Scholar 

  31. Petty, M. C. (1996). Langmuir-Blodgett films : An introduction (p. 234). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  32. de Souza, N. C., Flores, J. C. J., & Silva, J. R. (2009). Layer-by-layer films from tartrazine dye with bovine serum albumin. Chemical Physics Letters, 484(1–3), 33–36. https://doi.org/10.1016/j.cplett.2009.10.065

    Article  CAS  Google Scholar 

  33. de Souza, N. C., Cavalheri, A. S., Brito, J. B., Job, A. E., Oliveira, O. N., Jr., Giacometti, J. A., & Silva, J. R. (2012). Photoinduced orientation in natural rubber. Chemical Physics Letters, 531, 110–113. https://doi.org/10.1016/j.cplett.2012.01.070

    Article  CAS  Google Scholar 

  34. Usacheva, M. N., Teichert, M. C., & Biel, M. A. (2003). The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. Journal of Photochemistry and Photobiology B: Biology, 71(1–3), 87–98. https://doi.org/10.1016/j.jphotobiol.2003.06.002

    Article  CAS  Google Scholar 

  35. Bartlett, J. A., & Indig, G. L. (1999). Effect of self-association and protein binding on the photochemical reactivity of triarylmethanes. Implications of noncovalent interactions on the competition between photosensitization mechanisms type I and type II. Photochemistry and Photobiology, 70(4), 490–498. https://doi.org/10.1111/j.1751-1097.1999.tb08243.x

    Article  CAS  PubMed  Google Scholar 

  36. Shin, S., Seo, J., Han, H., Kang, S., Kim, H., & Lee, T. (2016). Bio-Inspired extreme wetting surfaces for biomedical applications. Materials, 9, 116–141. https://doi.org/10.3390/ma9020116

    Article  CAS  PubMed Central  Google Scholar 

  37. Falde, E. J., Yohe, S. T., Colson, Y. L., & Grinstaff, M. W. (2016). Superhydrophobic materials for biomedical applications. Biomaterials, 104, 87–103. https://doi.org/10.1016/j.biomaterials.2016.06.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamoun, E. A., Kenawy, E. R. S., & Chen, X. (2017). A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research, 8(3), 217–233. https://doi.org/10.1016/j.jare.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barabási, A.-L., & Stanley, H. E. (1995). Fractal concepts in surface growth. New York: Press Syndicate of the University of Cambridge.

    Book  Google Scholar 

  40. Gorza, F. D. S., da Silva, R. J., Trescher, T. F., Pedro, G. C., de Sousa, M. A. O., Souto, P. C. S., Silva, J. R., & de Souza, N. C. (2016). Immobilization of chlorophyll by using layer-by-layer technique for controlled release systems and photodynamic inactivation. Photodiagnosis and Photodynamic Therapy, 15, 147–155. https://doi.org/10.1016/j.pdpdt.2016.06.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq (Brazil). Oliveira de Sousa, dos Santos, Sousa, de Faria, Ribeiro and Rocha would like to thank CAPES for the scholarship. Valverde would like to thank CNPq for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nara C. de Souza.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O. Sousa, M.A., de Faria, M.A.C., Ribeiro, R.P. et al. Latex membranes with methylene blue dye for antimicrobial photodynamic therapy. Photochem Photobiol Sci 20, 1027–1032 (2021). https://doi.org/10.1007/s43630-021-00077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00077-z

Keywords

Navigation