Skip to main content

Advertisement

Log in

Are TomoFix Locking Plates Really Anatomical for Indian Population?

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The use of a TomoFix plate can be a challenge in Asian population who inherently have smaller tibial bones. This study aims to find out the normal proximal tibial morphometric measurements in Indian population and to compare the Medial Anterior Radius of Curvature (MAROC) of proximal tibia with the Proximal Part Radius of Curvature (PPROC) of the available TomoFix plates, to estimate conformity of the fit between them.

Methods

Retrospective Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) based proximal tibial measurements were performed on 824 knees, 664 females and 160 males (604 patients). The mean MAROC, mean MAROC in males and mean MAROC in females were compared to the PPROC of TomoFix plates.

Results

The radiological measurements revealed a mean AP length of 45.22 ± 3.79 mm, mean ML width of 69.04 ± 5.01 mm and mean MAROC of 21.88 ± 2.11 mm. The mean MAROC in males was 24.07 ± 2.1 mm, whereas in females it was 21.35 ± 1.75 mm. The mean MAROC, mean MAROC in males and mean MAROC in females when compared to the PPROC of Standard TomoFix plate (38 mm), Small TomoFix and Anatomical TomoFix plates (30 mm) showed a significant difference (p < 0.01), indicating that the radius of curvature of the plate does not match the radius of curvature of the anteromedial tibial plateau.

Conclusion

The TomoFix plates, including Small (Asian Version) and Anatomical plates, are relatively large for the Indian population. Our study may help the implant to designers develop a plate that will better suit the Indian population, improving results and reducing hardware-related complications of MOWHTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Source: TomoFix Medial High Tibial Plate (MHT) Surgical Technique, DePuy Synthes [21])

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, [Gupta NR], upon reasonable request.

References

  1. Guarino, A., Farinelli, L., Iacono, V., Cozzolino, A., Natali, S., Zorzi, C., & Mariconda, M. (2023). Long-term survival and predictors of failure of opening wedge high tibial osteotomy. Orthopaedic Surgery, 15(4), 1002–1007. https://doi.org/10.1111/os.13674

    Article  PubMed  PubMed Central  Google Scholar 

  2. Han, J. H., Yang, J. H., Bhandare, N. N., Suh, D. W., Lee, J. S., Chang, Y. S., Yeom, J. W., & Nha, K. W. (2016). Total knee arthroplasty after failed high tibial osteotomy: A systematic review of open versus closed wedge osteotomy. Knee Surgery, Sports Traumatology, Arthroscopy, 24(8), 2567–2577. https://doi.org/10.1007/s00167-015-3807-1

    Article  PubMed  Google Scholar 

  3. Floerkemeier, S., Staubli, A. E., Schroeter, S., Goldhahn, S., & Lobenhoffer, P. (2013). Outcome after high tibial open-wedge osteotomy: A retrospective evaluation of 533 patients. Knee Surgery, Sports Traumatology, Arthroscopy, 21(1), 170–180. https://doi.org/10.1007/s00167-012-2087-2

    Article  PubMed  Google Scholar 

  4. DiffoKaze, A., Maas, S., Waldmann, D., Zilian, A., Dueck, K., & Pape, D. (2015). Biomechanical properties of five different currently used implants for open-wedge high tibial osteotomy. Journal of Experimental Orthopaedics, 2(1), 14. https://doi.org/10.1186/s40634-015-0030-4

    Article  Google Scholar 

  5. Staubli, A. E., & Jacob, H. A. (2010). Evolution of open-wedge high-tibial osteotomy: experience with a special angular stable device for internal fixation without interposition material. International Orthopaedics, 34(2), 167–172. https://doi.org/10.1007/s00264-009-0902-2

    Article  PubMed  Google Scholar 

  6. Agneskirchner, J. D., Freiling, D., Hurschler, C., & Lobenhoffer, P. (2006). Primary stability of four different implants for opening wedge high tibial osteotomy. Knee Surgery, Sports Traumatology, Arthroscopy, 14(3), 291–300. https://doi.org/10.1007/s00167-005-0690-1

    Article  CAS  PubMed  Google Scholar 

  7. Jung, W. H., Chun, C. W., Lee, J. H., Ha, J. H., Kim, J. H., & Jeong, J. H. (2013). Comparative study of medial opening-wedge high tibial osteotomy using 2 different implants. Arthroscopy, 29(6), 1063–1071. https://doi.org/10.1016/j.arthro.2013.02.020

    Article  PubMed  Google Scholar 

  8. Han, S. B., Bae, J. H., Lee, S. J., Jung, T. G., Kim, K. H., Kwon, J. H., & Nha, K. W. (2014). Biomechanical properties of a new anatomical locking metal block plate for opening wedge high tibial osteotomy: Uniplane osteotomy. Knee Surgery & Related Research, 26(3), 155–161. https://doi.org/10.5792/ksrr.2014.26.3.155

    Article  Google Scholar 

  9. Ahmad, M., Nanda, R., Bajwa, A. S., Candal-Couto, J., Green, S., & Hui, A. C. (2007). Biomechanical testing of the locking compression plate: When does the distance between bone and implant significantly reduce construct stability? Injury, 38(3), 358–364. https://doi.org/10.1016/j.injury.2006.08.058

    Article  CAS  PubMed  Google Scholar 

  10. Bottlang, M., Doornink, J., Fitzpatrick, D. C., & Madey, S. M. (2009). Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. Journal of Bone and Joint Surgery. American Volume, 91(8), 1985–1994. https://doi.org/10.2106/JBJS.H.01038.PMID:19651958;PMCID:PMC2714811

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pochrząst, M., Basiaga, M., Marciniak, J., & Kaczmarek, M. (2014). Biomechanical analysis of limited-contact plate used for osteosynthesis. Acta of Bioengineering and Biomechanics, 16(1), 99–105.

    PubMed  Google Scholar 

  12. Lee, S. S., Park, J., & Lee, D. H. (2022). Comparison of anatomical conformity between TomoFix anatomical plate and TomoFix Conventional Plate in Open-Wedge High Tibial Osteotomy. Medicina (Kaunas, Lithuania), 58(8), 1045. https://doi.org/10.3390/medicina58081045

    Article  PubMed  Google Scholar 

  13. Yoo, O. S., Lee, Y. S., Lee, M. C., Park, J. H., Kim, J. W., & Sun, D. H. (2016). Morphologic analysis of the proximal tibia after open wedge high tibial osteotomy for proper plate fitting. BMC Musculoskeletal Disorders, 17(1), 423. https://doi.org/10.1186/s12891-016-1277-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hussain, F., Abdul Kadir, M. R., Zulkifly, A. H., Sa’at, A., Aziz, A. A., Hossain, G., Kamarul, T., & Syahrom, A. (2013). Anthropometric measurements of the human distal femur: a study of the adult Malay population. Biomed Reseach International, 2013, 175056. https://doi.org/10.1155/2013/175056

    Article  Google Scholar 

  15. Yue, B., Varadarajan, K. M., Ai, S., Tang, T., Rubash, H. E., & Li, G. (2011). Differences of knee anthropometry between Chinese and white men and women. The Journal of Arthroplasty, 26(1), 124–130. https://doi.org/10.1016/j.arth.2009.11.020

    Article  PubMed  Google Scholar 

  16. Kwak, D. S., Han, S., Han, C. W., & Han, S. H. (2010). Resected femoral anthropometry for design of the femoral component of the total knee prosthesis in a Korean population. Anatomy & Cell Biology, 43(3), 252–259. https://doi.org/10.5115/acb.2010.43.3.252

    Article  Google Scholar 

  17. Kim, T. K., Phillips, M., Bhandari, M., Watson, J., & Malhotra, R. (2017). What differences in morphologic features of the knee exist among patients of various races? A Systematic Review. Clinical Orthopaedics & Related Research, 475(1), 170–182. https://doi.org/10.1007/s11999-016-5097-4

    Article  CAS  Google Scholar 

  18. Mensch, J. S., & Amstutz, H. C. (1975). Knee morphology as a guide to knee replacement. Clinical Orthopaedics and Related Research, 112, 231–241. PMID: 1192638.

    Google Scholar 

  19. Phombut, C., Rooppakhun, S., & Sindhupakorn, B. (2021). Morphometric measurement of the proximal tibia to design the tibial component of total knee arthroplasty for the Thai population. J Exp Orthop., 8(1), 118. https://doi.org/10.1186/s40634-021-00429-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dai, Y., & Bischoff, J. E. (2013). Comprehensive assessment of tibial plateau morphology in total knee arthroplasty: Influence of shape and size on anthropometric variability. Journal of Orthopaedic Research, 31(10), 1643–1652. https://doi.org/10.1002/jor.22410

    Article  PubMed  Google Scholar 

  21. TomoFix™ Medial High Tibial Plate (MHT) Surgical Technique. Available via http://synthes.vo.llnwd.net/o16/LLNWMB8/INT%20Mobile/Synthes%20International/Product%20Support%20Material/legacy_Synthes_PDF/STG%20for%20TomoFix%20Anatomical%20-%20DSEMTRM011502883.pdf

  22. TomoFix HTO Small Stature. Available via https://www.aofoundation.org/approved/approvedsolutionsfolder/2009/tomofix-hto-small-stature-asian-version#tab=clinical_cases; (www.aofoundation.org)

  23. Chaurasia, A., Tyagi, A., Santoshi, J. A., Chaware, P., & Rathinam, B. A. (2021). Morphologic features of the distal femur and proximal Tibia: A cross-sectional study. Cureus., 13(1), e12907. https://doi.org/10.7759/cureus.12907

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bansal V, Mishra A, Verma T, Maini D, Karkhur Y, Maini L. Anthropometric assessment of tibial resection surface morphology in total knee arthroplasty for tibial component design in Indian population. Journal of Arthroscopy and Joint Surgery [Internet]. 2018;5(1):24–8. Available from: http://resolver.scholarsportal.info/resolve/22149635/v05i0001/24_aaotrstcdiip.xml

  25. Niemeyer, P., Schmal, H., Hauschild, O., von Heyden, J., Südkamp, N. P., & Köstler, W. (2010). Open-wedge osteotomy using an internal plate fixator in patients with medial-compartment gonarthritis and varus malalignment: 3-year results with regard to preoperative arthroscopic and radiographic findings. Arthroscopy, 26(12), 1607–1616. https://doi.org/10.1016/j.arthro.2010.05.006. PMID: 20926232.

    Article  PubMed  Google Scholar 

  26. Sidhu, R., Moatshe, G., Firth, A., Litchfield, R., & Getgood, A. (2021). Low rates of serious complications but high rates of hardware removal after high tibial osteotomy with Tomofix locking plate. Knee Surgery, Sports Traumatology, Arthroscopy, 29(10), 3361–3367. https://doi.org/10.1007/s00167-020-06199-8

    Article  PubMed  Google Scholar 

  27. Darees, M., Putman, S., Brosset, T., Roumazeille, T., Pasquier, G., & Migaud, H. (2018). Opening-wedge high tibial osteotomy performed with locking plate fixation (TomoFix) and early weight-bearing but without filling the defect A concise follow-up note of 48 cases at 10 years’ follow-up. Orthopaedics & Traumatology: Surgery & Research, 104(4), 477–480. https://doi.org/10.1016/j.otsr.2017.12.021

    Article  CAS  Google Scholar 

  28. Hayatbakhsh, Z., Farahmand, F., & Karimpour, M. (2022). Is a Complete Anatomical Fit of the Tomofix Plate Biomechanically Favorable? A Parametric Study Using the Finite Element Method. Arch Bone Jt Surg., 10(8), 712–720. https://doi.org/10.22038/ABJS.2022.60928.3003.PMID:36258741;PMCID:PMC9569138

    Article  PubMed  PubMed Central  Google Scholar 

  29. Miller, D. L., & Goswami, T. (2007). A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clinical Biomechanics (Bristol, Avon), 22(10), 1049–1062. https://doi.org/10.1016/j.clinbiomech.2007.08.004

    Article  PubMed  Google Scholar 

  30. Hayatbakhsh, Z., & Farahmand, F. (2022). Effects of plate contouring quality on the biomechanical performance of high tibial osteotomy fixation: A parametric finite element study. Proceedings of the Institution of Mechanical Engineers. Part H, 236(3), 356–366. https://doi.org/10.1177/09544119211069207

    Article  Google Scholar 

Download references

Funding

The authors did not receive any financial support or funding for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

NR Gupta was involved in protocol development and main manuscript writing. PO Baranwal performed data collection and manuscript editing. S Doering contributed to main manuscript. V Raina performed statistical analysis and manuscript editing. A Nayak was involved in figure preparation and manuscript editing. R Killekar collected data.

Corresponding author

Correspondence to Nirav Rajesh Gupta.

Ethics declarations

Conflict of interest

Each of the authors states that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licencing arrangements, etc.,) that might pose a conflict of interest in connection with the submitted article.

Ethical standard statement

This article does not contain any studies with human or animal subjects performed by the any of the authors

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N.R., Baranwal, P., Doering, S. et al. Are TomoFix Locking Plates Really Anatomical for Indian Population?. JOIO 58, 495–502 (2024). https://doi.org/10.1007/s43465-024-01119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-024-01119-1

Keywords

Navigation