Skip to main content

Advertisement

Log in

The Dynamic Effect of Anterior Cruciate Ligament Deficiency on Patellar Height

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

The anterior tibial translation (ATT) in case of Anterior Cruciate Ligament (ACL) tear can lead to dynamic alterations of the extensor apparatus biomechanics. The aim of this study is to evaluate the dynamic effect of isolated ACL deficiency on patellar height. The hypothesis is that the ATT of ACL-insufficient knees dynamically reduces patellar height.

Methods

Skeletally mature patients who underwent ACL reconstruction using hamstring graft between January and December 2018 were included in this study. The Posterior Tibial Slope (PTS), Caton–Deschamps (CDI), modified Insall–Salvati (MISI), and Blackburne–Peel (BPI) indices were calculated in standard lateral and TELOS X-rays. The mean of the measurements calculated between two observers was used to compare these parameters.

Results

95 patients (M: 57; F: 38; 95 knees) were included in the study with a mean age of 31.8 years (16–56 years old). Significant patellar height reduction (CDI: 0.11 [− 0.32; 0.31]; MISI: 0.09 [− 0.66; 0.30]) was reported in TELOS compared with standard lateral knee radiography (p < 0.001). 20.0% of the study knees reported an abnormal CDI and 84.2% (16/19 knees) of them reduced this index to within normal limits in TELOS. 20.0% of the knees with mild patella alta reduced CDI in TELOS but always remained above 1.2.

Conclusions

The abnormal ATT in case of ACL-deficient knees results in a lowering effect of the patella in TELOS X-rays. In patients with ACL tear and anterior pain the reconstructive ligament surgery should be performed to avoid also chronic anterior knee pain.

Level of evidence

Basic Science Study (Case Series).

Clinical relevance

The decrease in patellar height in stress-X-rays compared with standard lateral knee radiography in ACL deficient knees, should be considered as a possible contributing cause of anterior pain in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hernández, L.M., Micheo, W.F., Amy, E. (2006). Rehabilitation update for the anterior cruciate ligament injured patient: current concepts. Boletín de la Asociación Médica de Puerto Rico, 98(1), 62–72

    PubMed  Google Scholar 

  2. Micheo, W., Hernández, L., Seda, C. (2010). Evaluation, management, rehabilitation, and prevention of anterior cruciate ligament injury: Current concepts. PM and R, 2(10), 935–944. https://doi.org/10.1016/j.pmrj.2010.06.014

  3. Li, G., DeFrate, L.E., Sun, H., Gill, T.J. (2004). In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. American Journal of Sports Medicine, 32(6), 1415–1420. https://doi.org/10.1177/0363546503262175

  4. Smith, B.A., Livesay, G.A., Woo, S.L.Y. (1993). Biology and biomechanics of the anterior cruciate ligament. Clinics in Sports Medicine, 12(4), 637–670

  5. Kessler, M.A., Behrend, H., Henz, S., Stutz, G., Rukavina, A., Kuster, M.S. (2008). Function, osteoarthritis and activity after ACL-rupture: 11 Years follow-up results of conservative versus reconstructive treatment. Knee Surgery, Sports Traumatology, Arthroscopy, 16(5), 442–448. https://doi.org/10.1007/s00167-008-0498-x

  6. Ajuied, A., Wong, F., Smith, C., Norris, M,. Earnshaw, P., Back, D., et al. (2014) Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. American Journal of Sports Medicine, 42(9), 2242–2252. https://doi.org/10.1177/0363546513508376

  7. Harris. J.D., Abrams, G.D., Bach, B.R., Williams, D., Heidloff, D., Bush-Joseph, C.A., et al. (2014). Return to sport after ACL reconstruction. Orthopedics, 37(2), e103–8. https://doi.org/10.3928/01477447-20140124-10

    Article  PubMed  Google Scholar 

  8. Walter, S. G., Cucchi, D., Fröschen, F., Luceri, F., Schildberg, F. A., Mangiavini, L., et al. (2019). Microfracture combined with anterior cruciate ligament reconstruction compared to isolated microfractures for osteochondral lesions. Journal of Biological Regulators and Homeostatic Agents, 33(6 Suppl. 3), 125–131. Congress of the Italian Orthopaedic Resea

    Google Scholar 

  9. Luceri, F., Agnoletto, M., Lesman, J., Poszepczyński, J., Domżalski, M.E., Mangiavini, L. (2019). Management of intraoperative contamination of anterior cruciate ligament graft. Journal of Biological Regulators and Homeostatic Agents, 33(6 Suppl. 3), 119–124. Congress of the Italian Orthopaedic Resea

  10. Goes, R.A., Cavalcanti, A.S., Siqueira Campos, A.L., de Farias Cardoso, R., Coelho, O.N., McCormack ,R.G., et al. (2019). Prediction of reparability of meniscal tears in athletes using magnetic resonance. Journal of Biological Regulators and Homeostatic Agents, 33(6 Suppl. 3), 161–170. Congress of the Italian Orthopaedic Resea

  11. Plassard, J., Masson, J.B., Malatray, M., Swan, J., Luceri, F., Roger, J., et al. (2020). Factors lead to return to sports and recreational activity after total knee replacement: a retrospective study. SICOT-J, 6, 11. https://doi.org/10.1051/sicotj/2020009

  12. Wojtys, E.M., Huston, L.J. (1994). Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. The American Journal of Sports Medicine, 22(1), 89–104. https://doi.org/10.1177/036354659402200116 

  13. Tsepis, E., Vagenas, G., Ristanis, S., Georgoulis, A.D. (2006). Thigh muscle weakness in ACL-deficient knees persists without structured rehabilitation. Clinical Orthopaedics and Related Research, 450, 211–218. https://doi.org/10.1097/01.blo.0000223977.98712.30

  14. Seijas, R., Sallent, A., Pons, A., Cusco, X., Catala, J., Cugat, R., et al. (2018). Changes in patellar height due to bone-tendon-bone graft. Revista Espanola de Cirugia Ortopedica y Traumatologia (Engl Ed), 62(5), 337–342. English, Spanish. https://doi.org/10.1016/j.recot.2018.03.002

  15. Lin, C. F. J., Wu, J. J., Chen, T. S., & Huang, T. F. (2005). Comparison of the Insall-Salvati ratio of the patella in patients with and without an ACL tear. Knee Surgery, Sports Traumatology, Arthroscopy, 13(1), 8–11. https://doi.org/10.1007/s00167-004-0515-7

    Article  PubMed  Google Scholar 

  16. Shelbourne, K.D., Trumper, R. V. (1997). Preventing anterior knee pain after anterior cruciate ligament reconstruction. American Journal of Sports Medicine, 25(1), 41–47. https://doi.org/10.1177/036354659702500108

  17. Seijas, R., Cuscó, X., Sallent, A., Serra, I., Ares, O., Cugat, R. (2016). Pain in donor site after BTB-ACL reconstruction with PRGF: a randomized trial. Archives of Orthopaedic and Trauma Surgery, 136(6), 829–835. https://doi.org/10.1007/s00402-016-2458-0

  18. Wang, H. J., Ao, Y. F., Jiang, D., Gong, X., Wang, Y. J., Wang, J., et al. (2015). Relationship between Quadriceps Strength and Patellofemoral Joint Chondral Lesions after Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 43(9), 2286–2292. https://doi.org/10.1177/0363546515588316

    Article  PubMed  Google Scholar 

  19. Castoldi, M., Magnussen, R. A., Gunst, S., Batailler, C., Neyret, P., Lustig, S., et al. (2020). A randomized controlled trial of bone-patellar tendon–bone anterior cruciate ligament reconstruction with and without lateral extra-articular tenodesis: 19-year clinical and radiological follow-up. The American Journal of Sports Medicine, 48(7), 1665–1672. https://doi.org/10.1177/0363546520914936

    Article  PubMed  Google Scholar 

  20. Branch, T. P., Mayr, H. O., Browne, J. E., Campbell, J. C., Stoehr, A., & Jacobs, C. A. (2010). Instrumented examination of anterior cruciate ligament injuries: minimizing flaws of the manual clinical examination arthroscopy. Journal of Arthroscopic and Related Surgery, 26(7), 997–1004. https://doi.org/10.1016/j.arthro.2010.01.019

    Article  PubMed  Google Scholar 

  21. Panisset, J. C., Ntagiopoulos, P. G., Saggin, P. R., & Dejour, D. (2012). A comparison of TelosTM stress radiography versus RolimeterTM in the diagnosis of different patterns of anterior cruciate ligament tears. Orthopaedics and Traumatology: Surgery and Research, 98(7), 751–758. https://doi.org/10.1016/j.otsr.2012.07.003

    Article  Google Scholar 

  22. Pugh, L., Mascarenhas, R., Arneja, S., Chin, P.Y.K., Leith, J.M. (2009). Current concepts in instrumented knee-laxity testing. American Journal of Sports Medicine, 37(1), 199–210. https://doi.org/10.1177/0363546508323746

    Article  Google Scholar 

  23. Grelsamer, R.P., Meadows, S. (1992) The modified Insall-Salvati ratio for assessment of patellar height. Clinical Orthopaedics and Related Research, 282, 170–176

    Google Scholar 

  24. Caton, J., Deschamps, G., Chambat, P., Lerat, J.,L., Dejour, H. (1982) [Patella infera. Apropos of 128 cases]. Revue de Chirurgie Orthopédique et Réparatrice de l Appareil Moteur, 68(5), 317–325 (French)

  25. Luceri, F., Basilico, M., Batailler, C., Randelli, P. S., Peretti, G. M., Servien, E., et al. (2020). Effects of sagittal tibial osteotomy on frontal alignment of the knee and patellar height. International Orthopaedics, 44(11), 2291–2298. https://doi.org/10.1007/s00264-020-04580-3

    Article  PubMed  Google Scholar 

  26. Luceri, F., Roger, J., Randelli, P. S., Lustig, S., & Servien, E. (2020). How does isolated medial patellofemoral ligament reconstruction influence patellar height? The American Journal of Sports Medicine, 48(4), 895–900. https://doi.org/10.1177/0363546520902132

    Article  PubMed  Google Scholar 

  27. Martin, N. J., Lustig, S., Servien, E., Mangiavini, L., & Luceri, F. (2019). Transosseous suture loop technique for MPFL reconstruction. Journal of Biological Regulators and Homeostatic Agents, 33(6 Suppl. 3), 133–138. Congress of the Italian Orthopaedic Resea

    Google Scholar 

  28. Seil, R., Müller, B., Georg, T., Kohn, D., & Rupp, S. (2000). Reliability and interobserver variability in radiological patellar height ratios. Knee Surgery, Sports Traumatology, Arthroscopy, 8(4), 231–236

    Article  CAS  Google Scholar 

  29. de Vasconcelos, D. P., de Paula, Mozella A., de Sousa Filho, P. G. T., Oliveira, G. C., & de Araújo Barros Cobra HA., (2015). Femoropatellar radiographic alterations in cases of anterior cruciate ligament failure. Revista Brasileira de Ortopedia (English Edition), 50(1), 43–49. https://doi.org/10.1016/j.rboe.2015.01.005

  30. Degnan, A. J., Maldjian, C., Adam, R. J., Fu, F. H., & Didomenico, M. (2015). Comparison of Insall-Salvati ratios in children with an acute anterior cruciate ligament tear and a matched control population. American Journal of Roentgenology, 204(1), 161–166. https://doi.org/10.2214/AJR.13.12435

    Article  PubMed  Google Scholar 

  31. Vampertzis, T., Barmpagianni, C., Nitis, G., Papastergiou, S. (2020). A study of the possible effect of abnormal patella height on meniscal tears. Journal of Orthopaedics, 22, 170–172. https://doi.org/10.1016/j.jor.2020.04.012

  32. Ntagiopoulos, P.G., Bonin, N., Sonnery-Cottet, B., Badet, R., Dejour, D. (2014). The incidence of trochlear dysplasia in anterior cruciate ligament tears. International Orthopaedics, 38(6), 1269–1275. https://doi.org/10.1007/s00264-014-2291-4

  33. Aglietti, P., Insall, J. N., & Cerulli, G. (1983). Patellar pain and incongruence. I: Measurements of incongruence. Clinical Orthopaedics and Related Research, 176, 217–224

  34. Yiannakopoulos, C.K., Mataragas, E., Antonogiannakis, E. (2008). The effect of quadriceps contraction during weight-bearing on four patellar height indices. Journal of Bone and Joint Surgery - Series B, 90(7), 870–873. https://doi.org/10.1302/0301-620X.90B7.20111

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Luceri.

Ethics declarations

Conflict of Interest

FL has nothing to disclose. MB has nothing to disclose. CB has nothing to disclose. PSR reports personal fees from Arthrex, personal fees from Depuy (Johnson&Johnson), outside the submitted work. SL reports personal fees from Lepine, personal fees from Depuy (Johnson&Johnson), personal fees from Heraeus, personal fees from Smith & Nephew, personal fees from Stryker, personal fees from Medacta, other from Corin, other from Amplitude, outside the submitted work. ES reports personal fees from Smith & Nephew, grants from Corin, outside the submitted work.

Ethical Approval

The Advisory Committee on Research Information Processing in the Field of Health approved this study in Paris on May 2019 under number 19-134. Our medical practice has not been modified for this study. All procedures were performed in accordance with the ethical standards of the institutional and/or national research committee, the 1964 Helsinki declaration and its later amendments, or comparable ethical standards.

Informed Consent

As per institutional standards, formal patient consent is not required for this type of study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luceri, F., Basilico, M., Batailler, C. et al. The Dynamic Effect of Anterior Cruciate Ligament Deficiency on Patellar Height. JOIO 56, 1403–1409 (2022). https://doi.org/10.1007/s43465-022-00632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-022-00632-5

Keywords

Navigation