Skip to main content

Advertisement

Log in

Acetabular and Femoral Component Positioning Using Direct Anterior Approach Versus Posterior Approach in Total Hip Arthroplasty

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Direct anterior approach (DAA) has recently become popular in total hip arthroplasty (THA). However, irrespective of the surgical approach used, component malposition is an important factor affecting function and complications after THA. This study aims to compare component positioning on the femoral and acetabular side between DAA and posterior approach (PA) to the hip joint. We hypothesized that the two approaches are similar in terms of component positioning.

Methods

We prospectively studied 50 patients, matched according to age, sex, and body mass index, undergoing THA, divided non-randomly into 2 groups. Group 1 comprised 25 patients (35 hips) undergoing THA using DAA and group 2 comprised 25 patients (25 hips) undergoing THA using PA. Ten patients from group 1 had simultaneous bilateral THA. Radiological parameters studied were acetabular inclination (AI), coronal femoral stem alignment (CFA), leg length difference (LLD), acetabular cup version (AV), and femoral stem version (FV).

Results

There was no significant difference in AI, CFA, LLD, AV, and FV between the two groups. Excellent to good inter and intra-observer reliability expressed in terms of intraclass correlation coefficient (ICC) was noted for all the radiographic measurements.

Conclusion

Both DAA and PA for THA achieve comparable radiological component positioning. DAA may not provide any advantage over PA in terms of positioning of the prosthesis.

Level of Evidence

Level II, non-randomized comparative study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Petis, S., Howard, J. L., Lanting, B. L., & Vasarhelyi, E. M. (2015). Surgical approach in primary total hip arthroplasty: anatomy, technique and clinical outcomes. Canadian Journal of Surgery, 58, 128–139. https://doi.org/10.1503/cjs.007214.

    Article  PubMed Central  Google Scholar 

  2. Mohan, K. (2017). The direct anterior approach to the hip joint. Ortho & Rheum Open Access, 9(3), 555761. https://doi.org/10.19080/OROAJ.2017.09.555761.

    Article  Google Scholar 

  3. Paillard, P. (2007). Hip replacement by a minimal anterior approach. International Orthopaedics, 31(Suppl 1), S13-15. https://doi.org/10.1007/s00264-007-0433-7.

    Article  PubMed  Google Scholar 

  4. Wang, Z., Hou, J.-Z., Wu, C.-H., Zhou, Y.-J., Gu, X.-M., Wang, H.-H., et al. (2018). A systematic review and meta-analysis of direct anterior approach versus posterior approach in total hip arthroplasty. Journal of Orthopaedic Surgery and Research, 13, 229. https://doi.org/10.1186/s13018-018-0929-4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Christensen, C. P., & Jacobs, C. A. (2015). Comparison of patient function during the first six weeks after direct anterior or posterior total hip arthroplasty (THA): a randomized study. Journal of Arthroplasty, 30, 94–97. https://doi.org/10.1016/j.arth.2014.12.038.

    Article  Google Scholar 

  6. Zawadsky, M. W., Paulus, M. C., Murray, P. J., & Johansen, M. A. (2014). Early outcome comparison between the direct anterior approach and the mini-incision posterior approach for primary total hip arthroplasty: 150 consecutive cases. Journal of Arthroplasty, 29, 1256–1260. https://doi.org/10.1016/j.arth.2013.11.013.

    Article  Google Scholar 

  7. Zhao, H.-Y., Kang, P.-D., Xia, Y.-Y., Shi, X.-J., Nie, Y., & Pei, F.-X. (2017). Comparison of early functional recovery after total hip arthroplasty using a direct anterior or posterolateral approach: a randomized controlled trial. Journal of Arthroplasty, 32, 3421–3428. https://doi.org/10.1016/j.arth.2017.05.056.

    Article  Google Scholar 

  8. Restrepo, C., Parvizi, J., Pour, A. E., & Hozack, W. J. (2010). Prospective randomized study of two surgical approaches for total hip arthroplasty. Journal of Arthroplasty, 25(671–679), e1. https://doi.org/10.1016/j.arth.2010.02.002.

    Article  Google Scholar 

  9. Post, Z. D., Orozco, F., Diaz-Ledezma, C., Hozack, W. J., & Ong, A. (2014). Direct anterior approach for total hip arthroplasty: indications, technique, and results. Journal of American Academy of Orthopaedic Surgeons, 22, 595–603. https://doi.org/10.5435/JAAOS-22-09-595.

    Article  Google Scholar 

  10. Tsukada, S., & Wakui, M. (2015). Lower dislocation rate following total hip arthroplasty via direct anterior approach than via posterior approach: five-year-average follow-up results. The Open Orthopaedics Journal, 9, 157–162. https://doi.org/10.2174/1874325001509010157.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sheth, D., Cafri, G., Inacio, M. C. S., Paxton, E. W., & Namba, R. S. (2015). Anterior and anterolateral approaches for tha are associated with lower dislocation risk without higher revision risk. Clinical Orthopaedics, 473, 3401–3408. https://doi.org/10.1007/s11999-015-4230-0.

    Article  Google Scholar 

  12. Schloemann, D. T., Edelstein, A. I., & Barrack, R. L. (2019). Changes in acetabular orientation during total hip arthroplasty. The Bone & Joint Journal, 101, 45–50. https://doi.org/10.1302/0301-620X.101B6.BJJ-2018-1335.R1.

    Article  Google Scholar 

  13. Grammatopoulos, G., Gofton, W., Cochran, M., Dobransky, J., Carli, A., Abdelbary, H., et al. (2018). Pelvic positioning in the supine position leads to more consistent orientation of the acetabular component after total hip arthroplasty. The Bone & Joint Journal, 100-B, 1280–1288. https://doi.org/10.1302/0301-620X.100B10.BJJ-2018-0134.R1.

    Article  CAS  Google Scholar 

  14. Rathod, P. A., Bhalla, S., Deshmukh, A. J., & Rodriguez, J. A. (2014). Does fluoroscopy with anterior hip arthroplasty decrease acetabular cup variability compared with a nonguided posterior approach? Clin Orthop, 472, 1877–1885. https://doi.org/10.1007/s11999-014-3512-2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lin, T. J., Bendich, I., Ha, A. S., Keeney, B. J., Moschetti, W. E., & Tomek, I. M. (2017). A comparison of radiographic outcomes after total hip arthroplasty between the posterior approach and direct anterior approach with intraoperative fluoroscopy. Journal of Arthroplasty, 32, 616–623. https://doi.org/10.1016/j.arth.2016.07.046.

    Article  Google Scholar 

  16. Ji, W., & Stewart, N. (2016). Fluoroscopy assessment during anterior minimally invasive hip replacement is more accurate than with the posterior approach. International Orthopaedics, 40, 21–27. https://doi.org/10.1007/s00264-015-2803-x.

    Article  PubMed  Google Scholar 

  17. Slotkin, E. M., Patel, P. D., & Suarez, J. C. (2015). Accuracy of fluoroscopic guided acetabular component positioning during direct anterior total hip arthroplasty. Journal of Arthroplasty, 30, 102–106. https://doi.org/10.1016/j.arth.2015.03.046.

    Article  Google Scholar 

  18. Hartford, J. M., & Bellino, M. J. (2017). The learning curve for the direct anterior approach for total hip arthroplasty: A single surgeon’s first 500 cases. Hip Int, 27, 483–488. https://doi.org/10.5301/hipint.5000488.

    Article  PubMed  Google Scholar 

  19. Moretti, V. M., & Post, Z. D. (2017). Surgical approaches for total hip arthroplasty. Indian Journal Orthopaedics, 51, 368–376. https://doi.org/10.4103/ortho.IJOrtho_317_16.

    Article  Google Scholar 

  20. Werner, B. C., & Brown, T. E. (2012). Instability after total hip arthroplasty. World Journal of Orthopaedics, 3, 122–130. https://doi.org/10.5312/wjo.v3.i8.122.

    Article  Google Scholar 

  21. Krenzel, B. A., Berend, M. E., Malinzak, R. A., Faris, P. M., Keating, E. M., Meding, J. B., et al. (2010). High preoperative range of motion is a significant risk factor for dislocation in primary total hip arthroplasty. Journal of Arthroplasty, 25, 31–35. https://doi.org/10.1016/j.arth.2010.04.007.

    Article  Google Scholar 

  22. Masonis, J. L., & Bourne, R. B. (2002). Surgical approach, abductor function, and total hip arthroplasty dislocation. Clincal Orthopaedics, 405, 46–53. https://doi.org/10.1097/00003086-200212000-00006.

    Article  Google Scholar 

  23. Rogers, M., Blom, A. W., Barnett, A., Karantana, A., & Bannister, G. C. (2009). Revision for recurrent dislocation of total hip replacement. Hip Int J Clin Exp Res Hip Pathol Ther, 19, 109–113. https://doi.org/10.1177/112070000901900205.

    Article  Google Scholar 

  24. Mahoney, C. R., & Pellicci, P. M. (2003). Complications in primary total hip arthroplasty: avoidance and management of dislocations. Instructional Course Lectures, 52, 247–255.

    PubMed  Google Scholar 

  25. Barrett, W. P., Turner, S. E., & Leopold, J. P. (2013). Prospective randomized study of direct anterior vs postero-lateral approach for total hip arthroplasty. Journal of Arthroplasty, 28, 1634–1638. https://doi.org/10.1016/j.arth.2013.01.034.

    Article  Google Scholar 

  26. Cheng, T. E., Wallis, J. A., Taylor, N. F., Holden, C. T., Marks, P., Smith, C. L., et al. (2017). A prospective randomized clinical trial in total hip arthroplasty-comparing early results between the direct anterior approach and the posterior approach. Journal of Arthroplasty, 32(3), 883–890.

    Article  Google Scholar 

  27. Zhang, X. L., Wang, Q., & Jiang, Y. (2006). Zeng BF Minimally invasive total hip arthroplasty with anterior incision. Zhonghua wai ke za zhi, 44(8), 512–515.

    PubMed  Google Scholar 

  28. Luo, Z. L., Chen, M., Shang, X. F., et al. (2016). Direct anterior approach versus posterolateral approach for total hip arthroplasty in the lateral decubitus position. Zhonghua Yi Xue Za Zhi, 96, 2807–2812.

    CAS  PubMed  Google Scholar 

  29. Mushtaq, N., To, K., Gooding, C., & Khan, W. (2019). Radiological imaging evaluation of the failing total hip replacement. Frontiers in Surgery. https://doi.org/10.3389/fsurg.2019.00035.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sutherland, C. J., Wilde, A. H., Borden, L. S., & Marks, K. E. (1982). A ten-year follow-up of one hundred consecutive Müller curved-stem total hip-replacement arthroplasties. Journal of Bone and Joint Surgery American Volume, 64, 970–982.

    Article  CAS  Google Scholar 

  31. Reina, N., Salib, C. G., Perry, K. I., Hanssen, A. D., Berry, D. J., & Abdel, M. P. (2019). Mild coronal stem malalignment does not negatively impact survivorship or clinical results in uncemented primary total hip arthroplasties with dual-tapered implants. Journal of Arthroplasty, 34, 1127–1131. https://doi.org/10.1016/j.arth.2019.01.055.

    Article  Google Scholar 

  32. Meermans, G., Malik, A., Witt, J., & Haddad, F. (2011). Preoperative radiographic assessment of limb-length discrepancy in total hip arthroplasty. Clinical Orthopaedics, 469, 1677–1682. https://doi.org/10.1007/s11999-010-1588-x.

    Article  Google Scholar 

  33. Kjellberg, M., Al-Amiry, B., Englund, E., Sjödén, G. O., & Sayed-Noor, A. S. (2012). Measurement of leg length discrepancy after total hip arthroplasty. The reliability of a plain radiographic method compared to CT-scanogram. Skeletal Radiology, 41, 187–191. https://doi.org/10.1007/s00256-011-1166-7.

    Article  PubMed  Google Scholar 

  34. Wines, A. P., & McNicol, D. (2006). Computed tomography measurement of the accuracy of component version in total hip arthroplasty. Journal of Arthroplasty, 21, 696–701. https://doi.org/10.1016/j.arth.2005.11.008.

    Article  Google Scholar 

  35. Fujishiro, T., Hayashi, S., Kanzaki, N., Hashimoto, S., Kurosaka, M., Kanno, T., et al. (2014). Computed tomographic measurement of acetabular and femoral component version in total hip arthroplasty. International Orthopaedics, 38, 941–946. https://doi.org/10.1007/s00264-013-2264-z.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lewinnek, G. E., Lewis, J. L., Tarr, R., Compere, C. L., & Zimmerman, J. R. (1978). Dislocations after total hip-replacement arthroplasties. Journal of Bone and Joint Surgery. American Volume, 60, 217–220.

    Article  CAS  Google Scholar 

  37. Hamilton, W. G., Parks, N. L., & Huynh, C. (2015). Comparison of cup alignment, jump distance, and complications in consecutive series of anterior approach and posterior approach total hip arthroplasty. Journal of Arthroplasty, 30(11), 1959–1962. https://doi.org/10.1016/j.arth.2015.05.022.

    Article  Google Scholar 

  38. Abdel, M. P., von Roth, P., Jennings, M. T., Hanssen, A. D., & Pagnano, M. W. (2016). What safe zone? the vast majority of dislocated THAs are within the lewinnek safe zone for acetabular component position. Clinical Orthopaedics, 474, 386–391. https://doi.org/10.1007/s11999-015-4432-5.

    Article  Google Scholar 

  39. Tezuka, T., Heckmann, N. D., Bodner, R. J., & Dorr, L. D. (2019). Functional safe zone is superior to the lewinnek safe zone for total hip arthroplasty: why the lewinnek safe zone is not always predictive of stability. Journal of Arthroplasty, 34, 3–8. https://doi.org/10.1016/j.arth.2018.10.034.

    Article  Google Scholar 

  40. Alexandrov, T., Ahlmann, E. R., Menendez, L. R. (2014) Early Clinical and Radiographic Results of Minimally Invasive Anterior Approach Hip Arthroplasty. Adv Orthop 2014:e954208. https://www.hindawi.com/journals/aorth/2014/954208/. Accessed 7 Jul 2020

  41. Beamer, B. S., Morgan, J. H., Barr, C., Weaver, M. J., & Vrahas, M. S. (2014). Does fluoroscopy improve acetabular component placement in total hip arthroplasty? Clin Orthop, 472, 3953–3962. https://doi.org/10.1007/s11999-014-3944-8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Matta, J. M., Shahrdar, C., & Ferguson, T. (2005). Single-incision anterior approach for total hip arthroplasty on an orthopaedic table. Clin Orthop, 441, 115–124. https://doi.org/10.1097/01.blo.0000194309.70518.cb.

    Article  PubMed  Google Scholar 

  43. Bingham, J. S., Spangehl, M. J., Hines, J. T., Taunton, M. J., & Schwartz, A. J. (2018). Does intraoperative fluoroscopy improve limb-length discrepancy and acetabular component positioning during direct anterior total hip arthroplasty? Journal of Arthroplasty, 33, 2927–2931. https://doi.org/10.1016/j.arth.2018.05.004.

    Article  Google Scholar 

  44. Peng, L., Zeng, Y., Wu, Y., Zeng, J., Liu, Y., & Shen, B. (2020). Clinical, functional and radiographic outcomes of primary total hip arthroplasty between direct anterior approach and posterior approach: a systematic review and meta-analysis. BMC Musculoskelet Disord, 21, 338. https://doi.org/10.1186/s12891-020-03318-x.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Nil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Goyal.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

The institutional ethics committee approved the study. Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article. The study was conducted in All India Institute of Medical Sciences, Rishikesh, India.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, T., Choudhury, A.K., Paul, S. et al. Acetabular and Femoral Component Positioning Using Direct Anterior Approach Versus Posterior Approach in Total Hip Arthroplasty. JOIO 55, 1215–1224 (2021). https://doi.org/10.1007/s43465-020-00343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-020-00343-9

Keywords

Navigation