Skip to main content
Log in

Recent advances in the kinetics of normal/abnormal grain growth: a review

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Recent progress in the kinetics of grain coarsening and abnormal grain growth (AGG) is presented in this overview article. The factors affecting the kinetics of grain growth is reviewed with the emphasis on the recent findings on the solute drag and Zener pinning effects as well as the special case of duplex alloys, where the latter is discussed for the behavior of dual-phase steels during intercritical annealing. The common isothermal kinetics models for grain growth are listed, which is followed by the critical discussion on the simplifications and the commonly used methods for the determination of grain growth exponent (n) and activation energy (Q). The obtained values of n and Q for several classes of important engineering alloys such as microalloyed steels, stainless steels, magnesium alloys, aluminum alloys, titanium alloys, and high-entropy alloys are summarized with the discussion on the obtained values of kinetics parameters and their deviation from the theoretical expectations. Finally, the factors leading to AGG (such as the coarsening and dissolution of pinning particles and the crystallographic texture), the proposed mechanisms (such as the solid-state wetting and the grain boundary faceting/defaceting phenomena), and the kinetics of AGG (based on the empirical power law and the similarity of AGG to primary recrystallization in the form of secondary recrystallization) are reviewed. This overview can shed light on the understanding of grain growth and its effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors stated that the processed data required to reproduce these findings were available in this manuscript.

References

  1. Hillert M. On the theory of normal and abnormal grain growth. Acta Metall. 1965;13:227–38.

    Article  CAS  Google Scholar 

  2. Rios PR, Zöllner D. Critical assessment 30: grain growth–unresolved issues. Mater Sci Technol. 2018;34:629–38.

    Article  ADS  CAS  Google Scholar 

  3. Humphreys J, Rohrer GS, Rollett A. Recrystallization and related annealing phenomena. 3rd ed. Oxford: Elsevier; 2017.

    Google Scholar 

  4. Gladman T. The theory and inhibition of abnormal grain growth in steels. JOM. 1992;44:21–4.

    Article  CAS  Google Scholar 

  5. Verlinden B, Driver J, Samajdar I, Doherty RD. Thermomechanical processing of metallic materials. Amsterdam: Elsevier; 2007.

    Google Scholar 

  6. Shirdel M, Mirzadeh H, Parsa MH. Abnormal grain growth in AISI 304L stainless steel. Mater Charact. 2014;97:11–7.

    Article  CAS  Google Scholar 

  7. Sun Y, Fujii H. Effect of abnormal grain growth on microstructure and mechanical properties of friction stir welded SPCC steel plates. Mater Sci Eng A. 2017;694:81–92.

    Article  CAS  Google Scholar 

  8. Simpson CJ, Aust KT, Winegard WC. The four stages of grain growth. Metall Trans. 1971;2:987–91.

    Article  CAS  Google Scholar 

  9. Miodownik MA. A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminium alloys. J Light Met. 2002;2:125–35.

    Article  Google Scholar 

  10. Peng H, Jian Z, Liu F. Review of thermo-kinetic correlation during grain growth in nanocrystalline materials. Int J Ceram Eng Sci. 2020;2:49–65.

    Article  CAS  Google Scholar 

  11. Ko KJ, Cha PR, Srolovitz D, Hwang NM. Abnormal grain growth induced by sub-boundary-enhanced solid-state wetting: analysis by phase-field model simulations. Acta Mater. 2009;57:838–45.

    Article  ADS  CAS  Google Scholar 

  12. Heidarzadeh A. Tensile behavior, microstructure, and substructure of the friction stir welded 70/30 brass joints: RSM EBSD, and TEM study. Arch Civ Mech Eng. 2019;19:137–46.

    Article  Google Scholar 

  13. Chen XM, Lin YC, Wu F. EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy. J Alloy Compd. 2017;724:198–207.

    Article  CAS  Google Scholar 

  14. Chen S, Tseng KK, Tong Y, Li W, Tsai CW, Yeh JW, Liaw PK. Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy. J Alloy Compd. 2019;795:19–26.

    Article  CAS  Google Scholar 

  15. Naghizadeh M, Mirzadeh H. Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metall Mater Trans A. 2016;47:5698–703.

    Article  CAS  Google Scholar 

  16. Najafkhani F, Mirzadeh H, Zamani M. Effect of intercritical annealing conditions on grain growth kinetics of dual phase steel. Met Mater Int. 2019;25:1039–46.

    Article  CAS  Google Scholar 

  17. Zhou TH, Zurob HS. Abnormal and post-abnormal austenite grain growth kinetics in Nb–Ti microalloyed steels. Can Metall Q. 2011;50:389–95.

    Article  CAS  Google Scholar 

  18. Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing. Mater Chem Phys. 2019;230:1–8.

    Article  CAS  Google Scholar 

  19. Pourbahari B, Mirzadeh H, Emamy M. Elucidating the effect of intermetallic compounds on the behavior of Mg–Gd–Al–Zn magnesium alloys at elevated temperatures. J Mater Res. 2017;32:4186–95.

    Article  ADS  CAS  Google Scholar 

  20. Gottstein G, Shvindlerman LS. Grain boundary migration in metals: thermodynamics, kinetics, applications. 2nd ed. Boca Raton: CRC; 2010.

    Google Scholar 

  21. Chamanfar A, Chentouf SM, Jahazi M, Lapierre-Boire LP. Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel. J Mater Res Technol. 2020;9:12102–14.

    Article  CAS  Google Scholar 

  22. Xu Y, Liu J, Zhao Y, Jiao Y. Austenite grain growth kinetics and mechanism of grain growth in 12Cr ultra-super-critical rotor steel. Philos Mag. 2021;101:77–95.

    Article  ADS  CAS  Google Scholar 

  23. Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng A. 2019;759:90–6.

    Article  CAS  Google Scholar 

  24. Naghizadeh M, Mirzadeh H. Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metall Mater Trans A. 2018;49:2248–56.

    Article  CAS  Google Scholar 

  25. Sohrabi MJ, Mirzadeh H, Dehghanian C. Significance of martensite reversion and austenite stability on the mechanical properties and TRIP effect of austenitic stainless steels. J Mater Eng Perform. 2020;29:3233–42.

    Article  CAS  Google Scholar 

  26. Krauss G. Steels processing, structure, and performance. 2nd ed. Materials Park: ASM International; 2015.

    Book  Google Scholar 

  27. Gómez M, Medina SF. Role of microalloying elements in the microstructure of hot rolled steels. Int J Mater Res. 2011;102:1197–207.

    Article  Google Scholar 

  28. Bayat-Tork N, Mahmudi R, Hoseini-Athar MM. Hot deformation constitutive analysis and processing maps of extruded Mg–Gd binary alloys. J Mater Res Technol. 2020;9:15346–59.

    Article  CAS  Google Scholar 

  29. Lin YC, Wu XY, Chen XM, Chen J, Wen DX, Zhang JL, Li LT. EBSD study of a hot deformed nickel-based superalloy. J Alloy Compd. 2015;640:101–13.

    Article  CAS  Google Scholar 

  30. Garcia-Bernal MA, Mishra RS, Verma R, Hernández-Silva D. Inhibition of abnormal grain growth during hot deformation behavior of friction stir processed 5083 Al alloys. Mater Sci Eng A. 2015;636:326–30.

    Article  CAS  Google Scholar 

  31. Abbaschian R, Abbaschian L, Reed-Hill RE. Physical metallurgy principles. 4th ed. Boston: Cengage Learning; 2009.

    Google Scholar 

  32. Suryanarayana C, Koch CC. Nanocrystalline materials—current research and future directions. Hyperfine Interact. 2000;130:5–44.

    Article  ADS  CAS  Google Scholar 

  33. Fu LM, Wang HR, Wang W, Shan AD. Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels. Mater Sci Technol. 2011;27:996–1001.

    Article  ADS  Google Scholar 

  34. Suikkanen P, Karjalainen P, DeArdo AJ (2009) Effect of carbon content on the phase transformation characteristics, microstructure and properties of 500 MPa grade microalloyed steels with nonpolygonal ferrite microstructures, la metallurgia italiana 41–54

  35. Staśko R, Adrian H, Adrian A. Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel. Mater Char. 2006;56:340–7.

    Article  Google Scholar 

  36. Humphreys FJ. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II The effect of second-phase particles. Acta Mater. 1997;45:5031–9.

    Article  ADS  CAS  Google Scholar 

  37. Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Mater Sci Eng A. 2019;750:125–31.

    Article  CAS  Google Scholar 

  38. Graux A, Cazottes S, De Castro D, San Martín D, Capdevila C, Cabrera JM, Molas S, Schreiber S, Mirkovic D, Danoix F, Bugnet M, Fabregue D, Perez M. Precipitation and grain growth modelling in Ti–Nb microalloyed steels. Materialia. 2019;5:100233.

    Article  CAS  Google Scholar 

  39. Grajcar A, Borek W. Thermo-mechanical processing of high-manganese austenitic TWIP-type steels. Arch Civ Mech Eng. 2008;8:29–38.

    Article  Google Scholar 

  40. Maalekian M, Radis R, Militzer M, Moreau A, Poole WJ. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Mater. 2012;60:1015–26.

    Article  ADS  CAS  Google Scholar 

  41. Giuliano G. Superplastic forming of advanced metallic materials. Sawton: Woodhead Publishing; 2011.

    Book  Google Scholar 

  42. Langdon TG. Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci. 2009;44:5998–6010.

    Article  ADS  CAS  Google Scholar 

  43. Lin YC, Xiao YW, Jiang YQ, Pang GD, Li HB, Zhang XY, Zhou KC. Spheroidization and dynamic recrystallization mechanisms of Ti-55511 alloy with bimodal microstructures during hot compression in α+ β region. Mater Sci Eng A. 2020;782:139282.

    Article  CAS  Google Scholar 

  44. Chen MS, Zou ZH, Lin YC, Li HB, Wang GQ. Formation mechanism of large grains inside annealed microstructure of GH4169 superalloy by cellular automation method. J Mater Sci Technol. 2019;35:1403–11.

    Article  Google Scholar 

  45. Chen MS, Zou ZH, Lin YC, Li HB, Wang GQ, Ma YY. Microstructural evolution and grain refinement mechanisms of a Ni-based superalloy during a two-stage annealing treatment. Mater Char. 2019;151:445–56.

    Article  CAS  Google Scholar 

  46. Takayama T, Wey M, Nishizawa T. Grain growth in dual-phase steel. Tetsu-to-Hagané. 1982;68:1016–23.

    Article  CAS  Google Scholar 

  47. Azeem MA, Tewari A, Ramamurty U. Effect of recrystallization and grain growth on the mechanical properties of an extruded AZ21 Mg alloy. Mater Sci Eng, A. 2010;527:898–903.

    Article  Google Scholar 

  48. Ralph B. Grain growth. Mater Sci Technol. 1990;6:1136–44.

    Article  ADS  Google Scholar 

  49. Ivasishin OM, Shevchenko SV, Semiatin SL. Effect of crystallographic texture on the isothermal beta grain-growth kinetics of Ti–6Al–4V. Mater Sci Eng A. 2002;332:343–50.

    Article  Google Scholar 

  50. Pourbahari B, Mirzadeh H, Emamy M, Roumina R. Enhanced ductility of a fine-grained Mg–Gd–Al–Zn magnesium alloy by hot extrusion. Adv Eng Mater. 2018;20:1701171.

    Article  Google Scholar 

  51. Beck PA, Holzworth ML, Hu H. Instantaneous rates of grain growth. Phys Rev. 1948;73:526–7.

    Article  ADS  CAS  Google Scholar 

  52. Burke JE, Turnbull D. Recrystallization and grain growth. Progress Metal Phys. 1952;3:220–92.

    Article  ADS  CAS  Google Scholar 

  53. Sellars CM, Whiteman JA. Recrystallization and grain growth in hot rolling. Metal Sci. 1979;13:187–94.

    Article  CAS  Google Scholar 

  54. Nishizawa T. Grain growth in single-and dual-phase steels. Tetsu-to-hagané. 1984;70:194–202.

    Article  Google Scholar 

  55. Dong D, Chen F, Cui Z. Modeling of austenite grain growth during austenitization in a low alloy steel. J Mater Eng Perform. 2016;25:152–64.

    Article  CAS  Google Scholar 

  56. Raghunathan N, Sheppard T. Microstructural development during annealing of hot rolled Al–Mg alloys. Mater Sci Technol. 1989;5:542–7.

    Article  ADS  CAS  Google Scholar 

  57. Anelli E. Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars. ISIJ Int. 1992;32:440–9.

    Article  CAS  Google Scholar 

  58. Du S, Li Y, Zheng Y. Kinetics of austenite grain growth during heating and its influence on hot deformation of LZ50 steel. J Mater Eng Perform. 2016;25:2661–9.

    Article  CAS  Google Scholar 

  59. Xu Y, Tang D, Song Y, Pan X. Prediction model for the austenite grain growth in a hot rolled dual phase steel. Mater Des. 2012;36:275–8.

    Article  CAS  Google Scholar 

  60. Bhattacharyya JJ, Agnew SR, Muralidharan G. Texture enhancement during grain growth of magnesium alloy AZ31B. Acta Mater. 2015;86:80–94.

    Article  ADS  CAS  Google Scholar 

  61. Park JH, Tomota Y, Wey MY. Suppression of grain growth in dual phase steels. Mater Sci Technol. 2002;18:1517–23.

    Article  ADS  CAS  Google Scholar 

  62. Illescas S, Fernández J, Guilemany JM. Kinetic analysis of the austenitic grain growth in HSLA steel with a low carbon content. Mater Lett. 2008;62:3478–80.

    Article  CAS  Google Scholar 

  63. Azizi G, Mirzadeh H, Parsa MH. Unraveling the effect of homogenization treatment on decomposition of austenite and mechanical properties of low-alloyed TRIP steel. Steel Res Int. 2016;87:820–3.

    Article  CAS  Google Scholar 

  64. Simpson CJ, Aust KT, Winegard WC. Activation energies for normal grain growth in lead and cadmium base alloy. Metall Trans. 1971;2:993–7.

    Article  CAS  Google Scholar 

  65. Pawlak K, Białobrzeska B, Konat Ł. The influence of austenitizing temperature on prior austenite grain size and resistance to abrasion wear of selected low-alloy boron steel. Arch Civ Mech Eng. 2016;16:913–26.

    Article  Google Scholar 

  66. Yue C, Zhang L, Liao S, Gao H. Kinetic analysis of the austenite grain growth in GCr15 steel. J Mater Eng Perform. 2010;19:112–5.

    Article  CAS  Google Scholar 

  67. Annan KA, Siyasiya CW, Stumpf WE. Austenite grain growth kinetics after isothermal deformation in microalloyed steels with varying Nb concentrations. ISIJ Int. 2018;58:333–9.

    Article  CAS  Google Scholar 

  68. An X, Tian Y, Wang H, Shen Y, Wang Z. Suppression of austenite grain coarsening by using Nb–Ti microalloying in high temperature carburizing of a gear steel. Adv Eng Mater. 2019;21:1900132.

    Article  Google Scholar 

  69. Militzer M, Giumelli A, Hawbolt EB, Meadowcroft TR. Austenite grain growth kinetics in Al-killed plain carbon steels. Metall Mater Trans A. 1996;27:3399–409.

    Article  Google Scholar 

  70. Liu Z, Bao Y, Wang M, Li X, Zeng F. Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process. Int J Miner Metall Mater. 2019;26:282–90.

    Article  CAS  Google Scholar 

  71. Yang G, Sun X, Yong Q, Li Z, Li X. Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel. J Iron Steel Res Int. 2014;21:757–64.

    Article  CAS  Google Scholar 

  72. Yang HL, Xu G, Wang L, Yuan Q, He B. A study of growth of austenite grains in a steel microalloyed with Ti and Nb. Met Sci Heat Treat. 2017;59:8–13.

    Article  ADS  CAS  Google Scholar 

  73. Zhao Y, Shi J, Cao W, Wang M, Xie G. Kinetics of austenite grain growth in medium-carbon niobium-bearing steel. J Zhejiang Univ Sci A. 2011;12:171–6.

    Article  CAS  Google Scholar 

  74. Di Schino A, Kenny JM, Abbruzzese G. Analysis of the recrystallization and grain growth processes in AISI 316 stainless steel. J Mater Sci. 2002;37:5291–8.

    Article  ADS  Google Scholar 

  75. Mirzadeh H, Cabrera JM, Najafizadeh A. Constitutive relationships for hot deformation of austenite. Acta Mater. 2011;59:6441–8.

    Article  ADS  CAS  Google Scholar 

  76. Gavard L, Montheillet F, Le Coze J. Recrystallization and grain growth in high purity austenitic stainless steels. Scripta Mater. 1998;39:1095–9.

    Article  CAS  Google Scholar 

  77. Rajasekhara S, Ferreira PJ. Martensite→ austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel. Acta Mater. 2011;59:738–48.

    Article  ADS  CAS  Google Scholar 

  78. Zhao WX, Wu Y, Jiang SH, Wang H, Liu XJ, Lu ZP. Micro-alloying effects of yttrium on recrystallization behavior of an alumina-forming austenitic stainless steel. J Iron Steel Res Int. 2016;23:553–8.

    Article  Google Scholar 

  79. Kisko A, Talonen J, Porter DA, Karjalainen LP. Effect of Nb microalloying on reversion and grain growth in a high-Mn 204Cu austenitic stainless steel. ISIJ Int. 2015;55:2217–24.

    Article  CAS  Google Scholar 

  80. Sabooni S, Karimzadeh F, Enayati MH. Thermal stability study of ultrafine grained 304L stainless steel produced by martensitic process. J Mater Eng Perform. 2014;23:1665–72.

    Article  CAS  Google Scholar 

  81. Kashyap BP, Tangri K. Grain growth behaviour of type 316L stainless steel. Mater Sci Eng, A. 1992;149:L13–6.

    Article  Google Scholar 

  82. Mizera J, Wyrzykowski JW, Kurzydłowski KJ. Description of the kinetics of normal and abnormal grain growth in austenitic stainless steel. Mater Sci Eng A. 1988;104:157–62.

    Article  Google Scholar 

  83. Ma J, Yang X, Huo Q, Sun H, Qin J, Wang J. Mechanical properties and grain growth kinetics in magnesium alloy after accumulative compression bonding. Mater Des. 2013;47:505–9.

    Article  CAS  Google Scholar 

  84. Miao Q, Hu L, Wang X, Wang E. Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling. J Alloy Compd. 2010;493:87–90.

    Article  CAS  Google Scholar 

  85. Young JP, Askari H, Hovanski Y, Heiden MJ, Field DP. Thermal microstructural stability of AZ31 magnesium after severe plastic deformation. Mater Char. 2015;101:9–19.

    Article  CAS  Google Scholar 

  86. Jin Z, Yu D, Wu X, Yin K, Yan K. Drag effects of solute and second phase distributions on the grain growth kinetics of pre-extruded Mg-6Zn alloy. J Mater Sci Technol. 2016;32:1260–6.

    Article  CAS  Google Scholar 

  87. Roostaei M, Shirdel M, Parsa MH, Mahmudi R, Mirzadeh H. Microstructural evolution and grain growth kinetics of GZ31 magnesium alloy. Mater Char. 2016;118:584–92.

    Article  CAS  Google Scholar 

  88. Wang X, Hu L, Liu K, Zhang Y. Grain growth kinetics of bulk AZ31 magnesium alloy by hot pressing. J Alloy Compd. 2012;527:193–6.

    Article  CAS  Google Scholar 

  89. Silva CJ, Kula A, Mishra RK, Niewczas M. Grain growth kinetics and annealed texture characteristics of Mg-Sc binary alloys. J Alloy Compd. 2016;687:548–61.

    Article  CAS  Google Scholar 

  90. Alizadeh R, Mahmudi R, Ngan AHW, Langdon TG. Microstructural stability and grain growth kinetics in an extruded fine-grained Mg–Gd–Y–Zr alloy. J Mater Sci. 2015;50:4940–51.

    Article  ADS  CAS  Google Scholar 

  91. Hoseini-Athar MM, Mahmudi R, Babu RP, Hedström P. Effect of Zn content on the microstructural stability and grain growth kinetics of fine-grained extruded Mg–Gd–Zn alloys. J Alloy Compd. 2020;831:154766.

    Article  CAS  Google Scholar 

  92. Yu CY, Sun PL, Kao PW, Chang CP. Evolution of microstructure during annealing of a severely deformed aluminum. Mater Sci Eng A. 2004;366:310–7.

    Article  Google Scholar 

  93. Wierszyłłowski I, Stankowiak A, Wieczorek S, Samolczyk J. Kinetics of transformation during supersaturation and aging of the Al-4.7 mass% Cu alloy: grain size, dilatometric, and differential thermal analysis studies. J Phase Equilibr Diffus. 2005;26:555–60.

    Article  Google Scholar 

  94. Huda Z, Tuan Z. Kinetics of grain growth in 2024–T3: an aerospace aluminum alloy. J Alloy Compd. 2009;478:128–32.

    Article  CAS  Google Scholar 

  95. Mirzadeh H. Quantification of the strengthening effect of reinforcements during hot deformation of aluminum-based composites. Mater Des. 2015;65:80–2.

    Article  CAS  Google Scholar 

  96. Raghavan S, Satyam SS. Modeling the grain growth kinetics by cellular automaton. Mater Sci Eng A. 2007;445:203–9.

    Article  Google Scholar 

  97. Sadeghpour S, Javaheri V, Abbasi SM, Kömi J. The effect of phase stability on the grain growth behavior of beta titanium alloys. Phys B. 2020;593:412315.

    Article  CAS  Google Scholar 

  98. Lee DG, Li C, Lee Y, Mi X, Ye W. Effect of temperature on grain growth kinetics of high strength Ti–2Al–9.2 Mo–2Fe alloy. Thermochim Acta. 2014;586:66–71.

    Article  ADS  CAS  Google Scholar 

  99. Cherukuri B, Srinivasan R, Tamirisakandala S, Miracle DB. The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti–15Mo–2.6 Nb–3Al–0.2 Si. Scripta Mater. 2009;60:496–9.

    Article  CAS  Google Scholar 

  100. Gil FJ, Picas JA, Manero JM, Forn A, Planell JA. Effect of the addition of palladium on grain growth kinetics of pure titanium. J Alloy Compd. 1997;260:147–52.

    Article  CAS  Google Scholar 

  101. Gil FJ, Planell JA. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys. Mater Sci Eng A. 2000;283:17–24.

    Article  Google Scholar 

  102. Hoseini M, Pourian MH, Bridier F, Vali H, Szpunar JA, Bocher P. Thermal stability and annealing behaviour of ultrafine grained commercially pure titanium. Mater Sci Eng A. 2012;532:58–63.

    Article  CAS  Google Scholar 

  103. Vasilyev AA, Sokolov SF, Sokolov DF, Kolbasnikov NG. Modeling of grain growth kinetics in complexly alloyed austenite. Lett Mater. 2019;9:419–23.

    Article  Google Scholar 

  104. Xu YF, Yi DQ, Liu HQ, Wang B, Yang FL. Age-hardening behavior, microstructural evolution and grain growth kinetics of isothermal ω phase of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications. Mater Sci Eng A. 2011;529:326–34.

    Article  CAS  Google Scholar 

  105. Wang T, Guo H, Tan L, Yao Z, Zhao Y, Liu P. Beta grain growth behaviour of TG6 and Ti17 titanium alloys. Mater Sci Eng A. 2011;528:6375–80.

    Article  CAS  Google Scholar 

  106. Peng X, Guo H, Qin C, Shi Z, Zhao Z. Isothermal beta grain growth kinetics of TC4-DT titanium alloy under two different prior processing conditions: deformed vs undeformed. Rare Metal Mater Eng. 2014;43:1855–61.

    Article  Google Scholar 

  107. Li W, Xia K. Kinetics of the α grain growth in a binary Ti–44Al alloy and a ternary Ti–44Al–0.15 Gd alloy. Mater Sci Eng A. 2002;329:430–4.

    Article  Google Scholar 

  108. Klimova MV, Shaysultanov DG, Zherebtsov SV, Stepanov ND. Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy. Mater Sci Eng A. 2019;748:228–35.

    Article  CAS  Google Scholar 

  109. Seol JB, Wung Bae J, Li Z, Chan Han J, Gi Kim J, Raabe D, Seop Kim H. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 2018;151:366–76.

    Article  ADS  CAS  Google Scholar 

  110. Huang YC, Su CH, Wu SK, Lin C. A study on the Hall-Petch relationship and grain growth kinetics in FCC-structured high/medium entropy alloys. Entropy. 2019;21:297.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu WH, Wu Y, He JY, Nieh TG, Lu ZP. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Mater. 2013;68:526–9.

    Article  CAS  Google Scholar 

  112. Vaidya M, Anupam A, Vijay Bharadwaj J, Srivastava C, Murty BS. Grain growth kinetics in CoCrFeNi and CoCrFeMnNi high entropy alloys processed by spark plasma sintering. J Alloys Compd. 2019;791:1114–21.

    Article  CAS  Google Scholar 

  113. Gwalani B, Salloom R, Alam T, Valentin SG, Zhou X, Thompson G, Srinivasan SG, Banerjee R. Composition-dependent apparent activation-energy and sluggish grain-growth in high entropy alloys. Mater Res Lett. 2019;7:267–74.

    Article  CAS  Google Scholar 

  114. Napoli G, Di Schino A. Modelling grain growth kinetics in steels. Arch Metall Mater. 2018;63:839–44.

    CAS  Google Scholar 

  115. Shirdel M, Mirzadeh H, Parsa MH. Microstructural evolution during normal/abnormal grain growth in austenitic stainless steel. Metall Mater Trans A. 2014;45:5185–93.

    Article  CAS  Google Scholar 

  116. Novikov VY. Abnormal grain growth: effect of disperse particles. Met Sci Heat Treat. 2018;60:135–41.

    Article  ADS  CAS  Google Scholar 

  117. Rios PR. Some theoretical considerations on abnormal grain growth. Mater Sci Forum. 1996;204:247–56.

    Article  Google Scholar 

  118. Zöllner D, Rios PR. Topological changes in coarsening networks. Acta Mater. 2017;130:147–54.

    Article  ADS  Google Scholar 

  119. Novikov VY. Microstructure evolution during grain growth in materials with disperse particles. Mater Lett. 2012;68:413–5.

    Article  CAS  Google Scholar 

  120. Su C, Zhao G, Xiao H, Lan Y, Huang F. Abnormal grain growth of hi–b steel in the secondary recrystallization. Metall Microstruct Anal. 2018;7:608–17.

    Article  CAS  Google Scholar 

  121. Rios PR. Abnormal grain growth in materials containing particles. Acta Metall Mater. 1994;42:839–43.

    Article  Google Scholar 

  122. Kim SG, Park YB. Grain boundary segregation, solute drag and abnormal grain growth. Acta Mater. 2008;56:3739–53.

    Article  ADS  CAS  Google Scholar 

  123. Engler O, Huh MY. Evolution of the cube texture in high purity aluminum capacitor foils by continuous recrystallization and subsequent grain growth. Mater Sci Eng A. 1999;271:371–81.

    Article  Google Scholar 

  124. Birosca S, Nadoum A, Hawezy D, Robinson F, Kockelmann W. Mechanistic approach of Goss abnormal grain growth in electrical steel: Theory and argument. Acta Mater. 2020;185:370–81.

    Article  ADS  CAS  Google Scholar 

  125. Lee SB, Yoon DY, Hwang NM, Henry MF. Grain boundary faceting and abnormal grain growth in nickel. Metall Mater Trans A. 2000;31:985–94.

    Article  Google Scholar 

  126. Choi JS, Yoon DY. The temperature dependence of abnormal grain growth and grain boundary faceting in 316L stainless steel. ISIJ Int. 2001;41:478–83.

    Article  CAS  Google Scholar 

  127. Lee SB, Yoon DY, Henry MF. Abnormal grain growth and grain boundary faceting in a model Ni-base superalloy. Acta Mater. 2000;48:3071–80.

    Article  ADS  CAS  Google Scholar 

  128. Charit I, Mishra RS. Abnormal grain growth in friction stir processed alloys. Scripta Mater. 2008;58:367–71.

    Article  CAS  Google Scholar 

  129. Riontino G, Antonione C, Battezzati L, Marino F, Tabasso MC. Kinetics of abnormal grain growth in pure iron. J Mater Sci. 1979;14:86–90.

    Article  ADS  CAS  Google Scholar 

  130. Antonione C, Marino F, Riontino G, Tabasso MC. Effect of slight deformations on grain growth in iron. J Mater Sci. 1977;12:747–50.

    Article  ADS  CAS  Google Scholar 

  131. Ciulik J, Taleff EM. Dynamic abnormal grain growth: a new method to produce single crystals. Scripta Mater. 2009;61:895–8.

    Article  CAS  Google Scholar 

  132. Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K, Kainuma R. Abnormal grain growth induced by cyclic heat treatment. Science. 2013;341:1500–2.

    Article  ADS  CAS  PubMed  Google Scholar 

  133. Donaldson OK, Hattar K, Kaub T, Thompson GB, Trelewicz JR. Solute stabilization of nanocrystalline tungsten against abnormal grain growth. J Mater Res. 2018;33:68–80.

    Article  ADS  CAS  Google Scholar 

  134. Baricco M, Mastrandrea E, Antonione C, Viala B, Degauque J, Ferrara E, Fiorillo F. Grain growth and texture in rapidly solidified Fe (Si) 6.5 wt.% ribbons. Mater Sci Eng A. 1997;226:1025–9.

    Article  Google Scholar 

  135. Nasiri Z, Ghaemifar S, Naghizadeh M, Mirzadeh H. Thermal mechanisms of grain refinement in steels: a review. Metals Mater Int. 2020. https://doi.org/10.1007/s12540-020-00700-1.

    Article  Google Scholar 

  136. Dunn CG, Walter JL. Secondary recrystallization. In: Margolin H, editor. Recrystallization, grain growth and textures. Metals Park: ASM; 1966. p. 461–521.

    Google Scholar 

  137. Rios PR, Glicksman ME. Topological theory of abnormal grain growth. Acta Mater. 2006;54:5313–21.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to greatly thank the members of the Advanced Steels and Thermomechanically Processed Engineering Materials Laboratory for their help and support. Financial support by the University of Tehran is also gratefully acknowledged.

Funding

This work received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

The manuscript has been prepared by the contribution of all authors, it is the original authors' work, it has not been published before, it has been solely submitted to this journal, and if accepted, it will not be submitted to any other journal in any language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafkhani, F., Kheiri, S., Pourbahari, B. et al. Recent advances in the kinetics of normal/abnormal grain growth: a review. Archiv.Civ.Mech.Eng 21, 29 (2021). https://doi.org/10.1007/s43452-021-00185-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00185-8

Keywords

Navigation