Skip to main content
Log in

Stability of ultra-fine and nano-grains after severe plastic deformation: a critical review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this critical note, the thermal stability behavior of ultra-fine grained (UFG) and nano-structured (NS) metals and alloys produced through severe plastic deformation (SPD) techniques is reviewed. For this case, the common engineering metals with body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) crystal structures such as aluminum, copper, nickel, magnesium, steel, titanium, and their relating alloys were assessed. Microstructural evolution in these severely deformed materials following post-processing annealing treatment was investigated for various times and temperatures below the recrystallization point. The microstructure development reported in the literature was studied in terms of the stable grain structures correlated with different levels of plastic straining. The stacking fault energy (SFE) is noted to be a key issue which has a critical influence in predicting the coalescence or coarsening behavior of ultra-fine and nanoscale grains after SPD treatment by controlling the cross-slip phenomenon for screw dislocations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Harsha RN, Mithun Kulkarni V, Satish Babu B (2018) Severe plastic deformation a review. Mater. Today 5:22340–22349

    Google Scholar 

  2. Toth LS, Gu C (2014) Ultrafine-grain metals by severe plastic deformation. Mater Charact 92:1–14

    Article  CAS  Google Scholar 

  3. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189

    Article  CAS  Google Scholar 

  4. Hansen N (2004) Hall-petch relation and boundary strengthening. Scr. Mater. 51(8 SPEC. ISS):801–806

    Article  CAS  Google Scholar 

  5. Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58(4):383–502

    Article  CAS  Google Scholar 

  6. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881–981

    Article  CAS  Google Scholar 

  7. Edalati K, Horita Z (2016) A review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 652:325–352

    Article  CAS  Google Scholar 

  8. Kawasaki M, Langdon TG (2014) Review: Achieving superplasticity in metals processed by high-pressure torsion. J Mater Sci 49(19):6487–6496. https://doi.org/10.1007/s10853-014-8204-5

    Article  CAS  Google Scholar 

  9. Ghalehbandi SM, Malaki M, Gupta M (2019) Accumulative roll bonding-A review. Appl. Sci. (Switzerland) 9(17):3627

    CAS  Google Scholar 

  10. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184

    Article  CAS  Google Scholar 

  11. Khodabakhshi F, Simchi A (2017) The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites. Mater Des 130:26–36

    Article  CAS  Google Scholar 

  12. Nosko M, Štepánek M, Zifčák P, Orovčík L, Nagy Š, Dvorák T, Oslanec P, Khodabakhshi F, Gerlich AP (2019) Solid-state joining of powder metallurgy Al-Al2O3 nanocomposites via friction-stir welding: Effects of powder particle size on the weldability, microstructure, and mechanical property. Mater. Sci. Eng., A 754:190–204

    Article  CAS  Google Scholar 

  13. Mukhtarov S, Dudova N, Valitov V (2009) Processing and mechanical properties of bulk nanostructured nickel-based alloys. Mater. Sci. Eng., A 503(1):181–184

    Article  CAS  Google Scholar 

  14. Pachla W, Kulczyk M, Przybysz S, Skiba J, Wojciechowski K, Przybysz M, Topolski K, Sobolewski A, Charkiewicz M (2015) Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2. J Mater Process Technol 221:255–268

    Article  CAS  Google Scholar 

  15. Khodabakhshi F, Kazeminezhad M, Kokabi AH (2010) Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties. Mater. Sci. Eng., A 527(16–17):4043–4049

    Article  CAS  Google Scholar 

  16. Shin DH, Park JJ, Kim YS, Park KT (2002) Constrained groove pressing and its application to grain refinement of aluminum. Mater. Sci. Eng., A 328(1–2):98–103

    Article  Google Scholar 

  17. Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39(3):642–658

    Article  CAS  Google Scholar 

  18. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater. Sci. Eng., R 50(1–2):1–78

    Article  CAS  Google Scholar 

  19. Khodabakhshi F, Gerlich AP (2018) Accumulative fold-forging (AFF) as a novel severe plastic deformation process to fabricate a high strength ultra-fine grained layered aluminum alloy structure. Mater Charact 136:229–239

    Article  CAS  Google Scholar 

  20. Khodabakhshi F, Gerlich AP, Worswick M (2018) Fabrication and characterization of a high strength ultra-fine grained metal-matrix AA8006-B4C layered nanocomposite by a novel accumulative fold-forging (AFF) process. Mater Des 157:211–226

    Article  CAS  Google Scholar 

  21. Segal V (2018) Review: Modes and processes of severe plastic deformation (SPD). Materials 11(7):1175

    Article  CAS  Google Scholar 

  22. Figueiredo RB, Langdon TG (2012) Fabricating ultrafine-grained materials through the application of severe plastic deformation: A review of developments in Brazil. J Mater Res Technol 1(1):55–62

    Article  CAS  Google Scholar 

  23. Mansoor P, Dasharath SM (2020) Microstructural and mechanical properties of magnesium alloy processed by severe plastic deformation (SPD)-A review. Mater. Today 33:145–154

    Google Scholar 

  24. Faraji G, Kim HS (2017) Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes. Mater Sci Technol 33(8):905–923

    Article  CAS  Google Scholar 

  25. Edalati K (2019) Review on recent advancements in severe plastic deformation of oxides by high-pressure torsion (HPT). Adv Eng Mater 21(1):1800272

    Article  CAS  Google Scholar 

  26. Mahmoodian R, Annuar NSM, Faraji G, Bahar ND, Razak BA, Sparham M (2019) Severe Plastic Deformation of Commercial Pure Titanium (CP-Ti) for Biomedical Applications: A Brief Review. JOM 71(1):256–263

    Article  CAS  Google Scholar 

  27. Khodabakhshi F, Kazeminezhad M (2011) The annealing phenomena and thermal stability of severely deformed steel sheet. Mater. Sci. Eng., A 528(15):5212–5218

    Article  CAS  Google Scholar 

  28. Chinh NQ, Szommer P, Horita Z, Langdon TG (2006) Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv Mater 18(1):34–39

    Article  CAS  Google Scholar 

  29. Etienne A, Radiguet B, Genevois C, Le Breton JM, Valiev R, Pareige P (2010) Thermal stability of ultrafine-grained austenitic stainless steels. Mater. Sci. Eng., A 527(21):5805–5810

    Article  CAS  Google Scholar 

  30. Čížek J, Procházka I, Smola B, Stulíková I, Kužel R, Matěj Z, Cherkaska V, Islamgaliev RK, Kulyasova O (2007) Microstructure and thermal stability of ultra fine grained Mg-based alloys prepared by high-pressure torsion. Mater. Sci. Eng., A 462(1):121–126

    Article  CAS  Google Scholar 

  31. Emeis F, Peterlechner M, Divinski SV, Wilde G (2018) Grain boundary engineering parameters for ultrafine grained microstructures: Proof of principles by a systematic composition variation in the Cu-Ni system. Acta Mater 150:262–272

    Article  CAS  Google Scholar 

  32. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci 53(6):893–979

    Article  CAS  Google Scholar 

  33. Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60(1):130–207

    Article  CAS  Google Scholar 

  34. Gupta AK, Maddukuri TS, Singh SK (2016) Constrained groove pressing for sheet metal processing. Prog Mater Sci 84:403–462

    Article  CAS  Google Scholar 

  35. Heidarzadeh A, Mironov S, Kaibyshev R, Çam G, Simar A, Gerlich A, Khodabakhshi F, Mostafaei A, Field DP, Robson JD, Deschamps A, Withers PJ (2021) Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Prog. Mater Sci. 117:100752

    Article  CAS  Google Scholar 

  36. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding – Process, weldment structure and properties. Prog Mater Sci 53(6):980–1023

    Article  CAS  Google Scholar 

  37. Kawasaki M, Langdon TG (2015) Review: achieving superplastic properties in ultrafine-grained materials at high temperatures. J Mater Sci 51(1):19–32. https://doi.org/10.1007/s10853-015-9176-9

    Article  CAS  Google Scholar 

  38. Kumar P, Kawasaki M, Langdon TG (2016) Review: Overcoming the paradox of strength and ductility in ultrafine-grained materials at low temperatures. J Mater Sci 51(1):7–18. https://doi.org/10.1007/s10853-015-9143-5

    Article  CAS  Google Scholar 

  39. Wang Q, Jiang B, Chen D, Jin Z, Zhao L, Yang Q, Huang G, Pan F (2021) Strategies for enhancing the room-temperature stretch formability of magnesium alloy sheets: a review. J Mater Sci 56(23):12965–12998. https://doi.org/10.1007/s10853-021-06067-x

    Article  CAS  Google Scholar 

  40. Islamgaliev RK, Yunusova NF, Sabirov IN, Sergueeva AV, Valiev RZ (2001) Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation. Mater. Sci. Eng., A 319–321:877–881

    Article  Google Scholar 

  41. Krishnaiah A, Chakkingal U, Venugopal P (2005) Production of ultrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing. Scr Mater 52(12):1229–1233

    Article  CAS  Google Scholar 

  42. Senkov ON, Froes FH, Stolyarov VV, Valiev RZ, Liu J (1998) Microstructure of aluminum-iron alloys subjected to severe plastic deformation. Scr Mater 38(10):1511–1516

    Article  CAS  Google Scholar 

  43. Yin J, Lu J, Ma H, Zhang P (2004) Nanostructural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature. J Mater Sci 39(8):2851–2854. https://doi.org/10.1023/B:JMSC.0000021463.83899.b3

    Article  CAS  Google Scholar 

  44. Sabirov I, Murashkin MY, Valiev RZ (2013) Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater. Sci. Eng., A 560:1–24

    Article  CAS  Google Scholar 

  45. Abdulstaar MA, El-Danaf EA, Waluyo NS, Wagner L (2013) Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties. Mater. Sci. Eng., A 565:351–358

    Article  CAS  Google Scholar 

  46. Leo P, Cerri E, De Marco PP, Roven HJ (2007) Properties and deformation behaviour of severe plastic deformed aluminium alloys. J Mater Process Technol 182(1–3):207–214

    Article  CAS  Google Scholar 

  47. Markushev MV, Bampton CC, Murashkin MY, Hardwick DA (1997) Structure and properties of ultra-fine grained aluminium alloys produced by severe plastic deformation. Mater. Sci. Eng., A 234–236:927–931

    Article  Google Scholar 

  48. May J, Höppel HW, Göken M (2005) Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr Mater 53(2):189–194

    Article  CAS  Google Scholar 

  49. Roven HJ, Liu M, Werenskiold JC (2008) Dynamic precipitation during severe plastic deformation of an Al-Mg-Si aluminium alloy. Mater. Sci. Eng., A 483–484(1–2C):54–58

    Article  CAS  Google Scholar 

  50. Biswas S, Singh Dhinwal S, Suwas S (2010) Room-temperature equal channel angular extrusion of pure magnesium. Acta Mater. 58(9):3247–3261

    Article  CAS  Google Scholar 

  51. Lee S, Berbon PB, Furukawa M, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1999) Developing superplastic properties in an aluminum alloy through severe plastic deformation. Mater. Sci. Eng., A 272(1):63–72

    Article  Google Scholar 

  52. Dhal A, Panigrahi SK, Shunmugam MS (2017) Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys. J Alloys Compd 726:1205–1219

    Article  CAS  Google Scholar 

  53. Divinski SV, Padmanabhan KA, Wilde G (2011) Microstructure evolution during severe plastic deformation. Philos Mag 91(36):4574–4593

    Article  CAS  Google Scholar 

  54. Estrin Y, Vinogradov A (2010) Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview. Int J Fatigue 32(6):898–907

    Article  CAS  Google Scholar 

  55. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater 61(3):782–817

    Article  CAS  Google Scholar 

  56. Khodabakhshi F, Gerlich AP, Simchi A, Kokabi AH (2015) Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Mater. Sci. Eng., A 620:471–482

    Article  CAS  Google Scholar 

  57. Gubicza J, El-Tahawy M, Lábár JL, Bobruk EV, Murashkin MY, Valiev RZ, Chinh NQ (2020) Evolution of microstructure and hardness during artificial aging of an ultrafine-grained Al-Zn-Mg-Zr alloy processed by high pressure torsion. J Mater Sci 55(35):16791–16805. https://doi.org/10.1007/s10853-020-05264-4

    Article  CAS  Google Scholar 

  58. Horita Z, Fujinami T, Nemoto M, Langdon TG (2001) Improvement of mechanical properties for Al alloys using equal-channel angular pressing. J Mater Process Technol 117(3):288–292

    Article  CAS  Google Scholar 

  59. Sauvage X, Wilde G, Divinski SV, Horita Z, Valiev RZ (2012) Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng., A 540:1–12

    Article  CAS  Google Scholar 

  60. Zhu YT, Liao XZ, Srinivasan SG, Lavernia EJ (2005) Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J. Appl. Phys. 98(3):034319

    Article  CAS  Google Scholar 

  61. Ivanov KV, Ovcharenko VE (2020) Structural features of ultrafine-grained aluminum processed through accumulative roll bonding providing improved mechanical properties and thermal stability. Mater. Sci. Eng., A 775:138988

    Article  CAS  Google Scholar 

  62. Mazilkin AA, Myshlyaev MM (2006) Microstructure and thermal stability of superplastic aluminium-lithium alloy after severe plastic deformation. J Mater Sci 41(12):3767–3772. https://doi.org/10.1007/s10853-006-2637-4

    Article  CAS  Google Scholar 

  63. Mao J, Kang SB, Park JO (2005) Grain refinement, thermal stability and tensile properties of 2024 aluminum alloy after equal-channel angular pressing. J Mater Process Technol 159(3):314–320

    Article  CAS  Google Scholar 

  64. Adamczyk-Cieślak B, Mizera J, Kurzydłowski KJ (2010) Thermal stability of model Al–Li alloys after severe plastic deformation—Effect of the solute Li atoms. Mater. Sci. Eng., A 527(18):4716–4722

    Article  CAS  Google Scholar 

  65. McKenzie PWJ, Lapovok R (2010) ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: Microstructure. Acta Mater. 58(9):3198–3211

    Article  CAS  Google Scholar 

  66. Mohamed IF, Yonenaga Y, Lee S, Edalati K, Horita Z (2015) Age hardening and thermal stability of Al–Cu alloy processed by high-pressure torsion. Mater. Sci. Eng., A 627:111–118

    Article  CAS  Google Scholar 

  67. Saldana C, King AH, Chandrasekar S (2012) Thermal stability and strength of deformation microstructures in pure copper. Acta Mater 60(10):4107–4116

    Article  CAS  Google Scholar 

  68. Edalati K, Hashiguchi Y, Iwaoka H, Matsunaga H, Valiev RZ, Horita Z (2018) Long-time stability of metals after severe plastic deformation: Softening and hardening by self-annealing versus thermal stability. Mater. Sci. Eng., A 729:340–348

    Article  CAS  Google Scholar 

  69. Zhao YH, Liao XZ, Zhu YT, Horita Z, Langdon TG (2005) Influence of stacking fault energy on nanostructure formation under high pressure torsion. Mater. Sci. Eng., A 410–411:188–193

    Article  CAS  Google Scholar 

  70. Yu H, Wang L, Chai L, Li J, Lu C, Godbole A, Wang H, Kong C (2019) High thermal stability and excellent mechanical properties of ultrafine-grained high-purity copper sheets subjected to asymmetric cryorolling. Mater Charact 153:34–45

    Article  CAS  Google Scholar 

  71. Fernandez-Zelaia P, Melkote SN (2019) Process–structure–property relationships in bimodal machined microstructures using robust structure descriptors. J. Mater. Process. Technol. 273:116251

    Article  Google Scholar 

  72. Rodríguez-Calvillo P, Ferrer N, Cabrera JM (2015) Analysis of microstructure and strengthening in CuMg alloys deformed by equal channel angular pressing. J Alloys Compd 626:340–348

    Article  CAS  Google Scholar 

  73. Azzeddine H, Bourezg YI, Khereddine AY, Baudin T, Helbert AL, Brisset F, Kawasaki M, Bradai D, Langdon TG (2020) An investigation of the stored energy and thermal stability in a Cu–Ni–Si alloy processed by high-pressure torsion. Philos Mag 100(6):688–712

    Article  CAS  Google Scholar 

  74. Primorac MM, Abad MD, Hosemann P, Kreuzeder M, Maier V, Kiener D (2015) Elevated temperature mechanical properties of novel ultra-fine grained Cu–Nb composites. Mater. Sci. Eng., A 625:296–302

    Article  CAS  Google Scholar 

  75. Wilde G, Rösner H (2007) Stability aspects of bulk nanostructured metals and composites. J Mater Sci 42(5):1772–1781. https://doi.org/10.1007/s10853-006-0986-7

    Article  CAS  Google Scholar 

  76. Islamgaliev RK, Chmelik F, Kuzel R (1997) Thermal structure changes in copper and nickel processed by severe plastic deformation. Mater. Sci. Eng., A 234–236:335–338

    Article  Google Scholar 

  77. Ibrahim N, Peterlechner M, Emeis F, Wegner M, Divinski SV, Wilde G (2017) Mechanical alloying via high-pressure torsion of the immiscible Cu50Ta50 system. Mater. Sci. Eng., A 685:19–30

    Article  CAS  Google Scholar 

  78. Islamgaliev RK, Buchgraber W, Kolobov YR, Amirkhanov NM, Sergueeva AV, Ivanov KV, Grabovetskaya GP (2001) Deformation behavior of Cu-based nanocomposite processed by severe plastic deformation. Mater. Sci. Eng., A 319–321:872–876

    Article  Google Scholar 

  79. Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov VI (2002) Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta Mater 50(7):1639–1651

    Article  CAS  Google Scholar 

  80. Bachmaier A, Pfaff M, Stolpe M, Aboulfadl H, Motz C (2015) Phase separation of a supersaturated nanocrystalline Cu–Co alloy and its influence on thermal stability. Acta Mater 96:269–283

    Article  CAS  Google Scholar 

  81. Qi Y, Kosinova A, Kilmametov AR, Straumal BB, Rabkin E (2020) Stabilization of ultrafine-grained microstructure in high-purity copper by gas-filled pores produced by severe plastic deformation. Scr Mater 178:29–33

    Article  CAS  Google Scholar 

  82. Islamgaliev RK, Chmelik F, Kuzel R (1997) Thermal stability of submicron grained copper and nickel. Mater. Sci. Eng., A 237(1):43–51

    Article  Google Scholar 

  83. Gubicza J, Nam NH, Balogh L, Hellmig RJ, Stolyarov VV, Estrin Y, Ungár T (2004) Microstructure of severely deformed metals determined by X-ray peak profile analysis. J Alloys Compd 378(1):248–252

    Article  CAS  Google Scholar 

  84. Lugo N, Llorca N, Suñol JJ, Cabrera JM (2010) Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing. J Mater Sci 45(9):2264–2273

    Article  CAS  Google Scholar 

  85. Jayakumar PK, Balasubramanian K, Rabindranath Tagore G (2012) Recrystallisation and bonding behaviour of ultra fine grained copper and Cu–Cr–Zr alloy using ECAP. Mater. Sci. Eng., A 538:7–13

    Article  CAS  Google Scholar 

  86. Lomakin I, Castillo-Rodríguez M, Sauvage X (2019) Microstructure, mechanical properties and aging behaviour of nanocrystalline copper–beryllium alloy. Mater. Sci. Eng., A 744:206–214

    Article  CAS  Google Scholar 

  87. Yadav PC, Sharma NK, Sahu S, Shekhar S (2019) Influence of short heat-treatment on microstructural and mechanical inhomogeneity of constrained groove pressed Cu-Zn alloy. Mater. Chem. Phys. 238:121912

    Article  CAS  Google Scholar 

  88. Zhilyaev AP, Nurislamova GV, Valiev RZ, Baro MD, Langdon TG (2002) Thermal stability and microstructural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP). Metall Mater Trans A 33(6):1865–1868

    Article  Google Scholar 

  89. Korznikov AV, Dimitrov O, Korznikova GF, Dallas JP, Idrisova SR, Valiev RZ, Faudot F (1999) Thermal evolution of high-purity and boron-doped sub-microcrystalline Ni3Al produced by severe plastic deformation. Acta Mater 47(11):3301–3311

    Article  CAS  Google Scholar 

  90. Ravi Shankar M, Rao BC, Chandrasekar S, Dale Compton W, King AH (2008) Thermally stable nanostructured materials from severe plastic deformation of precipitation-treatable Ni-based alloys. Scr. Mater. 58(8):675–678

    Article  CAS  Google Scholar 

  91. Aristizabal K, Katzensteiner A, Bachmaier A, Mücklich F, Suárez S (2020) Microstructural evolution during heating of CNT/Metal Matrix Composites processed by Severe Plastic Deformation. Sci Rep 10(1):857

    Article  CAS  Google Scholar 

  92. Bachmaier A, Katzensteiner A, Wurster S, Aristizabal K, Suarez S, Pippan R (2020) Thermal stabilization of metal matrix nanocomposites by nanocarbon reinforcements. Scr Mater 186:202–207

    Article  CAS  Google Scholar 

  93. Popov VV, Popova EN, Kuznetsov DD, Stolbovsky AV, Shorohov EV, Nasonov PA, Gaan KA, Reglitz G, Divinski SV, Wilde G (2013) Evolution of Ni structure at dynamic channel-angular pressing. Mater. Sci. Eng., A 585:281–291

    Article  CAS  Google Scholar 

  94. Wang Z, Guan Y, Li L, Zhu L (2019) The fracture behavior and thermal stability of commercially pure nickel sheets processed by constrained groove pressing. Metals 9(10):1047

    Article  CAS  Google Scholar 

  95. Sauvage X, Ivanisenko Y (2007) The role of carbon segregation on nanocrystallisation of pearlitic steels processed by severe plastic deformation. J Mater Sci 42(5):1615–1621. https://doi.org/10.1007/s10853-006-0750-z

    Article  Google Scholar 

  96. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Structural refinement of low alloyed steels during severe plastic deformation. Mater. Sci. Eng., A 387–389(1–2 SPEC. ISS.):809–816

    Article  CAS  Google Scholar 

  97. Korznikov AV, Ivanisenko YV, Laptionok DV, Safarov IM, Pilyugin VP, Valiev RZ (1994) Influence of severe plastic deformation on structure and phase composition of carbon steel. Nanostruct Mater 4(2):159–167

    Article  CAS  Google Scholar 

  98. Umemoto M (2003) Nanocrystallization of Steels by Severe Plastic Deformation. Mater Trans 44(10):1900–1911

    Article  CAS  Google Scholar 

  99. Shin DH, Park JJ, Chang SY, Lee YK, Park KT (2002) Ultrafine Grained Low Carbon Steels Fabricated by Equal Channel Angular Pressing: Microstructures and Tensile Properties. ISIJ Int 42(12):1490–1496

    Article  CAS  Google Scholar 

  100. Ivanisenko YV, Korznikov AV, Safarov IM, Valiev RZ (1995) Formation of submicrocrystalline structure in iron and its alloys after severe plastic deformation. Nanostruct Mater 6(1):433–436

    Article  CAS  Google Scholar 

  101. Khodabakhshi F, Kazeminezhad M (2014) Differential scanning calorimetry study of constrained groove pressed low carbon steel: Recovery, recrystallisation and ferrite to austenite phase transformation. Mater Sci Technol 30(7):765–773

    Article  CAS  Google Scholar 

  102. Ivanisenko Y, Wunderlich RK, Valiev RZ, Fecht HJ (2003) Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation. Scr. Mater. 49(10 SPEC.):947–952

    Article  CAS  Google Scholar 

  103. Park KT, Kim YS, Lee JG, Shin DH (2000) Thermal stability and mechanical properties of ultrafine grained low carbon steel. Mater. Sci. Eng., A 293(1):165–172

    Article  Google Scholar 

  104. Duan J, Wen H, Zhou C, He X, Islamgaliev R, Valiev R (2020) Annealing behavior in a high-pressure torsion-processed Fe–9Cr steel. J Mater Sci 55(18):7958–7968

    Article  CAS  Google Scholar 

  105. Hao T, Fan ZQ, Zhao SX, Luo GN, Liu CS, Fang QF (2014) Strengthening mechanism and thermal stability of severely deformed ferritic/martensitic steel. Mater. Sci. Eng., A 596:244–249

    Article  CAS  Google Scholar 

  106. Khodabakhshi F, Kazeminezhad M (2011) The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel. Mater Des 32(6):3280–3286

    Article  CAS  Google Scholar 

  107. Ivanisenko Y, Wunderlich RK, Valiev RZ, Fecht HJ (2003) Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation. Scr Mater 49(10):947–952

    Article  CAS  Google Scholar 

  108. Figueiredo RB, Langdon TG (2009) Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing. Scr Mater 61(1):84–87

    Article  CAS  Google Scholar 

  109. Kim WJ, Lee BH, Lee JB, Lee MJ, Park YB (2010) Synthesis of high-strain-rate superplastic magnesium alloy sheets using a high-ratio differential speed rolling technique. Scr Mater 63(7):772–775

    Article  CAS  Google Scholar 

  110. Hamu GB, Eliezer D, Wagner L (2009) The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J Alloys Compd 468(1–2):222–229

    Article  CAS  Google Scholar 

  111. Yamashita A, Horita Z, Langdon TG (2001) Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng., A 300(1–2):142–147

    Article  Google Scholar 

  112. Kim WJ, Park IB (2013) Enhanced superplasticity and diffusional creep in ultrafine-grained Mg–6Al–1Zn alloy with high thermal stability. Scr Mater 68(3):179–182

    Article  CAS  Google Scholar 

  113. Edalati K, Kitabayashi K, Ikeda Y, Matsuda J, Li HW, Tanaka I, Akiba E, Horita Z (2018) Bulk nanocrystalline gamma magnesium hydride with low dehydrogenation temperature stabilized by plastic straining via high-pressure torsion. Scr Mater 157:54–57

    Article  CAS  Google Scholar 

  114. Lee TJ, Kim WJ (2020) Successful transition from low-temperature superplasticity to high-strain-rate superplasticity with increasing temperature in an ultrafine-grained Mg–Y–Zn–Zr alloy. J. Alloys Compd. 817:153298

    Article  CAS  Google Scholar 

  115. Jamalian M, Reeve JI, Field DP (2020) Thermal behavior of AZ31 gradient microstructure after cold severe surface plastic deformation. Mater. Charact. 169:110630

    Article  CAS  Google Scholar 

  116. Fong KS, Danno A, Tan MJ, Chua BW (2017) Tensile flow behavior of AZ31 magnesium alloy processed by severe plastic deformation and post-annealing at moderately high temperatures. J Mater Process Technol 246:235–244

    Article  CAS  Google Scholar 

  117. Eddahbi M, Valle JAD, Pérez-Prado MT, Ruano OA (2005) Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling. Mater. Sci. Eng., A 410–411:308–311

    Article  CAS  Google Scholar 

  118. Choi HY, Kim WJ (2015) Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy. J Mech Behav Biomed Mater 51:291–301

    Article  CAS  Google Scholar 

  119. del Valle JA, Peñalba F, Ruano OA (2007) Optimization of the microstructure for improving superplastic forming in magnesium alloys. Mater. Sci. Eng., A 467(1):165–171

    Article  CAS  Google Scholar 

  120. Stráská J, Janeček M, Čížek J, Stráský J, Hadzima B (2014) Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP). Mater Charact 94:69–79

    Article  CAS  Google Scholar 

  121. Young JP, Askari H, Hovanski Y, Heiden MJ, Field DP (2015) Thermal microstructural stability of AZ31 magnesium after severe plastic deformation. Mater Charact 101:9–19

    Article  CAS  Google Scholar 

  122. Tang L, Zhao Y, Islamgaliev RK, Valiev RZ, Zhu YT (2017) Microstructure and thermal stability of nanocrystalline Mg-Gd-Y-Zr alloy processed by high pressure torsion. J Alloys Compd 721:577–585

    Article  CAS  Google Scholar 

  123. Stolyarov VV, Zhu YT, Alexandrov IV, Lowe TC, Valiev RZ (2003) Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Mater. Sci. Eng., A 343(1):43–50

    Article  Google Scholar 

  124. Völker B, Maier-Kiener V, Werbach K, Müller T, Pilz S, Calin M, Eckert J, Hohenwarter A (2019) Influence of annealing on microstructure and mechanical properties of ultrafine-grained Ti45Nb. Mater. Des. 179:107864

    Article  CAS  Google Scholar 

  125. Stolyarov VV, Zeipper L, Mingler B, Zehetbauer M (2008) Influence of post-deformation on CP-Ti processed by equal channel angular pressing. Mater. Sci. Eng., A 476(1):98–105

    Article  CAS  Google Scholar 

  126. Li Z, Fu L, Fu B, Shan A (2012) Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling. Mater. Sci. Eng., A 558:309–318

    Article  CAS  Google Scholar 

  127. Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG (2007) Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Mater. Sci. Eng., A 463(1–2):22–26

    Article  CAS  Google Scholar 

  128. Zhao YH, Liao XZ, Horita Z, Langdon TG, Zhu YT (2008) Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys. Mater. Sci. Eng., A 493(1–2):123–129

    Article  CAS  Google Scholar 

  129. Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG (2006) Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl. Phys. Lett. 89(12):121906

    Article  CAS  Google Scholar 

  130. Edalati K, Akama D, Nishio A, Lee S, Yonenaga Y, Cubero-Sesin JM, Horita Z (2014) Influence of dislocation-solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater 69:68–77

    Article  CAS  Google Scholar 

  131. Edalati K, Horita Z (2011) Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater. Sci. Eng., A 528(25–26):7514–7523

    Article  CAS  Google Scholar 

  132. Edalati K, Horita Z (2011) High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater 59(17):6831–6836

    Article  CAS  Google Scholar 

  133. Setman D, Schafler E, Korznikova E, Zehetbauer MJ (2008) The presence and nature of vacancy type defects in nanometals detained by severe plastic deformation. Mater. Sci. Eng., A 493(1–2):116–122

    Article  CAS  Google Scholar 

  134. Balogh L, Ungár T, Zhao Y, Zhu YT, Horita Z, Xu C, Langdon TG (2008) Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys. Acta Mater 56(4):809–820

    Article  CAS  Google Scholar 

  135. Zhao YH, Horita Z, Langdon TG, Zhu YT (2008) Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu-Zn alloys: Influence of stacking fault energy. Mater. Sci. Eng., A 474(1–2):342–347

    Article  CAS  Google Scholar 

  136. Sarma VS, Wang J, Jian WW, Kauffmann A, Conrad H, Freudenberger J, Zhu YT (2010) Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals. Mater. Sci. Eng. A 527(29–30):7624–7630

    Article  CAS  Google Scholar 

  137. Misra RDK, Challa VSA, Venkatsurya PKC, Shen YF, Somani MC, Karjalainen LP (2015) Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy. Acta Mater 84:339–348

    Article  CAS  Google Scholar 

  138. Reed-Hill RE, Abbaschian R (1973) Physical metallurgy principles, Van Nostrand.

  139. Alaneme KK, Okotete EA (2017) Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments. J Magnes Alloy 5(4):460–475

    Article  CAS  Google Scholar 

  140. Villegas JC, Shaw LL (2009) Nanocrystallization process and mechanism in a nickel alloy subjected to surface severe plastic deformation. Acta Mater 57(19):5782–5795

    Article  CAS  Google Scholar 

  141. Khodabakhshi F, Gerlich AP, Simchi A, Kokabi AH (2015) Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing. Mater. Sci. Eng., A 626:458–466

    Article  CAS  Google Scholar 

  142. Khodabakhshi F, Gerlich AP, Verma D, Nosko M, Haghshenas M (2021) Depth-sensing thermal stability of accumulative fold-forged nanostructured materials. Mater. Des. 202:109554

    Article  CAS  Google Scholar 

  143. Murr LE (1973) Twin boundary energetics in pure aluminium. Acta Metall 21(6):791–797

    Article  CAS  Google Scholar 

  144. Morishige T, Hirata T, Uesugi T, Takigawa Y, Tsujikawa M, Higashi K (2011) Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing. Scr Mater 64(4):355–358

    Article  CAS  Google Scholar 

  145. Hertzberg RW, Vinci RP, Hertzberg JL (2013) Deformation and fracture mechanics of engineering materials. Wiley, New York, p 80

    Google Scholar 

  146. Gallagher PCJ (1970) The influence of alloying, temperature, and related effects on the stacking fault energy. Metall Trans 1(9):2429–2461

    Article  CAS  Google Scholar 

  147. Edalati K, Akama D, Nishio A, Lee S, Yonenaga Y, Cubero-Sesin JM, Horita Z (2014) Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater 69:68–77

    Article  CAS  Google Scholar 

  148. Heidarzadeh A, Saeid T, Klemm V, Chabok A, Pei Y (2019) Effect of stacking fault energy on the restoration mechanisms and mechanical properties of friction stir welded copper alloys. Mater Des 162:185–197

    Article  CAS  Google Scholar 

  149. Feng Z, Zhang X, Pan F (2012) Influence of solute and solute segregation on the stacking fault energy in hcp metals. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering 41(10):1765–1769

    CAS  Google Scholar 

  150. Guo Z, Miodownik AP, Saunders N, Schillé JP (2006) Influence of stacking-fault energy on high temperature creep of alpha titanium alloys. Scr Mater 54(12):2175–2178

    Article  CAS  Google Scholar 

  151. Dhal A, Panigrahi SK, Shunmugam MS, Precipitation phenomena, thermal stability and grain growth kinetics in an ultra-fine grained Al, (2014) alloy after annealing treatment. J Alloys Compd 649(2015):229–238

    Google Scholar 

  152. Edalati K, Fujioka T, Horita Z (2008) Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater. Sci. Eng., A 497(1–2):168–173

    Article  CAS  Google Scholar 

  153. Gubicza J, Chinh NQ, Lábár JL, Hegedűs Z, Langdon TG (2009) Twinning and dislocation activity in silver processed by severe plastic deformation. J Mater Sci 44(6):1656–1660. https://doi.org/10.1007/s10853-009-3278-1

    Article  CAS  Google Scholar 

  154. Karaman I, Yapici GG, Chumlyakov YI, Kireeva IV (2005) Deformation twinning in difficult-to-work alloys during severe plastic deformation. Mater. Sci. Eng., A 410–411:243–247

    Article  CAS  Google Scholar 

  155. Mohamed FA (2003) A dislocation model for the minimum grain size obtainable by milling. Acta Mater 51(14):4107–4119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Khodabakhshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabakhshi, F., Mohammadi, M. & Gerlich, A.P. Stability of ultra-fine and nano-grains after severe plastic deformation: a critical review. J Mater Sci 56, 15513–15537 (2021). https://doi.org/10.1007/s10853-021-06274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06274-6

Navigation